期刊文献+

外电场对锂修饰氧化石墨烯结构储氢性能的影响 被引量:2

Effects of External Electric Field on Hydrogen Storage Performance of Li-decorated Graphene Oxide
下载PDF
导出
摘要 基于密度泛函理论(DFT)的第一性原理方法,研究了外加电场对锂修饰氧化石墨烯结构(Li@GO)储氢性能的影响.考察Li@GO结构的稳定性及其对外加电场的响应,研究H_2-Li@GO结构的H_2分子吸附能、几何构型与外加电场的关系.研究结果表明,当外加电场方向垂直Li@GO平面向下(负电场)时,随电场强度增加,H_2分子的吸附能逐渐降低,H_2分子逐渐接近Li原子;当外加电场方向向上(正电场)时,随电场强度增加,H_2分子的吸附能逐渐升高,H_2分子逐渐远离Li原子,分波态密度(PDOS)分析表明:与无外加电场体系的PDOS相比,当对体系施加负电场时,H_2-Li的杂化峰向低能量方向位移,H_2分子与Li@GO结合更加紧密,提升了储氢稳定性;施加正电场时,H_2-Li的杂化峰向高能量方向位移,H_2分子与Li@GO作用减弱提升了氢气释放动力学性能.进一步计算表明,在无外加电场情况下,Li@GO结构最大储氢量在3.1%以上. Hydrogen storage performance of Li decorated graphene oxide(GO) under an external electric field was investigated with the first-principle method based on the density functional theory(DFT) calculations.Firstly the stability of Li@ GO structure due to the adsorption of Li atoms at different binding sites on GO structure was investigated.Then a stable Li@ GO structure was obtained and dependences of the structural stability and H2 adsorption of the Li@ GO structure on the electric field were discussed.The results indicate that both the H2 adsorption energy,E(ad),and the distance between H2 and Li atom,d(Li-H2),decrease with the increasing intensity of the downward electric field.While both E(ad) and d(Li-H2) increase with the increasing intensity of the upward electric field.From the partial density of state(PDOS) analysis,the H2-Li hybridization peaks under a negative electric field shifted to the larger negative energy region compared to those without an electric field,which indicates the H2-Li@ GO system becomes more stable under the negative electric field.When the positive electric field was added,the H2-Li hybridization peaks shifted to the smaller negative energy region,which indicates the interaction between H2 and Li becomes weaker.It is therefore anticipated that the adsorption-desorption processes of H2 on Li@ GO structure can be easily controlled by adding an electric field with appropriate intensity and direction.Further calculation indicates the Li@ GO structure has a maximum hydrogen storage capability of larger than 3.1%without the external electric field.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2016年第1期100-107,共8页 Chemical Journal of Chinese Universities
基金 中国科学院“西部之光”一般项目(批准号:Y32Z030H10) 重庆市科技攻关项目(批准号:cstc2012gg C50002,cstc2012gg C90003) 教育部留学回国人员科研启动基金资助~~
关键词 氧化石墨烯 储氢性能 外电场 密度泛函理论 吸附能 分波态密度 Graphene oxide Hydrogen storage performance Electric field Density functional theory Adsorption energy Partial density of state
  • 相关文献

参考文献37

  • 1Schlapbaeh L., Ziittel A., Nature, 2001, 414 (6861), 353--358.
  • 2Sehlapbaeh L. , Nature, 2009, 460 (7257) , 809--811.
  • 3Wang Y. , Meng Z. , Liu Y. , You D. , Wu K. , Lti J. , Wang X. , Dang K. , Rao D. , Lu R. , Applied Physics Letters, 2015, 106(6), 063901.
  • 4Fichtner M. , Advanced Engineering Materials, 2005, 7(6) , 443--455.
  • 5Grochala W. , Edwards P. P. , Chemical Reviews, 2004, 104(3), 1283--1316.
  • 6Eberle U. , Felderhoff M. , Schueth F. , Angewandte Chemie International Edition, 2009, 48(36) , 6608--6630.
  • 7Chen P. , Wu X. , Lin J. , Tan K. , Science, 1999, 285(5424) , 91--93.
  • 8Rosi N. L. , Eckert J. , Eddaoudi M. , Vodak D. T. , Kim J. , O' Keeffe M. , Yaghi O. M. , Science, 2003, 300(5622) , 1127-- 1129.
  • 9Yang W. J. , Huang n. Z. , Liu L. , J. Mater. Sci. Eng. , 2012,30(3), 449---452.
  • 10Wang L. , Lee K. , Sun Y. Y. , Lucking M. , Chen Z. , Zhao J. J. , Zhang S. B. , ACS Nano, 2009, 3(10) , 2995--3000.

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部