期刊文献+

基于自适应扩展卡尔曼滤波与神经网络的HPA预失真算法 被引量:4

HPA Predistortion Algorithm Based on Adaptive Extended Kalman Filter and Neural Network
下载PDF
导出
摘要 针对强记忆功放的非线性问题,提出一种基于自适应扩展卡尔曼滤波与神经网络的高功放(High power amplifier,HPA)预失真算法.采用实数固定延时神经网络(Real-valued focused time-delay neural network,RVFTDNN)对间接学习结构预失真系统中的预失真器和逆估计器进行建模,扩展卡尔曼滤波(Extended Kalman filter,EKF)算法训练神经网络,从理论上指出Levenberg-Marquardt(LM)算法是EKF算法的特殊情况,并用李亚普诺夫稳定性理论分析EKF算法的稳定收敛条件,推导出测量误差矩阵的自适应迭代公式.结果表明:自适应EKF算法的训练误差和泛化误差均比LM算法更低,预失真后的邻道功率比(Adjacent channel power ratio,ACPR)比LM算法改善了2 d B. For the nonlinearity of high power amplifier(HPA) with strong memory effects, a novel HPA predistortion algorithm based on adaptive extended Kalman filter and neural network is proposed. In the predistortion system with indirect learning architecture, the predistorter and HPA inverse estimator are modeled with the same real-valued focused time-delay neural network(RVFTDNN), and the extended Kalman filter(EKF) is used to iteratively train and update the coefficients of the neural network. It is concluded that Levenberg-Marquardt(LM) algorithm is a special case of EKF algorithm in theory. The stably convergence condition of EKF training algorithm is analysed with the Lyapunov stability theory and adaptive covariance matrix of measurement noise is derived for iterative computation. Simulation results show that compared with LM algorithm the training error and generalization error of adaptive EKF predistortion algorithm are both less. The adjacent channel power ratio(ACPR) of HPA output signal with adaptive EKF predistortion is better than that of LM predistortion by 2 d B.
出处 《自动化学报》 EI CSCD 北大核心 2016年第1期122-130,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61401099 61401100)资助~~
关键词 高功率放大器 预失真 神经网络 非线性 自适应扩展卡尔曼滤波 High power amplifier(HPA) predistortion neural network nonlinearity adaptive extended Kalman filter
  • 相关文献

参考文献32

  • 1Liu Y J, Lu B, Cao T, Zhou B H, Zhou J, Liu Y N. On the robustness of look-up table digital predistortion in the presence of loop delay error. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(10): 2432--2442.
  • 2Hammi O, Ghannouchi F A data-based nested LUT exhibiting memory effects. Components Letters, 2007, M, Boumaiza S, Vassilakis B. model for RF power amplifiers 1EEE Microwave and Wireless 11"(10): 712-714.
  • 3Muhonen K J, Kavehrad M, Krishnamoorthy R. Look-up table techniques for adaptive digital predistortion: a devel- opment and comparison. IEEE Transactions on Vehicular Technology, 2000, 49(5): 1995-2002.
  • 4Liu Y J, Zhou J, Chen W H, Zhou B H. A robust aug- mented complexity-reduced generalized memory polynomial for wideband RF power amplifiers. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2389 2401.
  • 5Morgan D R, Ma Z, Kim J, Zierdt M G, Pastalan J. A generalized memory polynomiM model for digital predistor- tion of RF power amplifiers. IEEE Transactions on Signal Processing, 2006, 54(10): 3852-3860.
  • 6Moon J, Bumman K. Enhanced Hammerstein behavioral model for broadband wireless transmitters. IEEE Transac- tions on Microwave Theory and T.echniques, 2011, 59(4): 924--933.
  • 7Liu Y J, Chen W H, Zhou J, Zhou B H, Ghannouchi F M. Digital predistortion for concurrent dual-band transmit- ters using 2-D modified memory polynomials. IEEE Trans- actions on Microwave Theory and Tectmiques, 2013, 61(1): 281--290.
  • 8Ibnkahla M, Sombrin J, Castanie F, Bershad N J. Neu- ral networks for modeling nonlinear memoryless commu- nication channels. IEEE Transactions on Communications, 1997, 45(7): 768-771.
  • 9Liu T J, Boumaiza S, Ghannouchi F M. Dynamic behavioral modeling of 3G power amplifiers using real-valued time- delay neural networks. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(3): 1025--1033.
  • 10翟建锋,周健义,洪伟,张雷.有记忆效应的功放实数延时模糊神经网络模型[J].微波学报,2009,25(5):41-44. 被引量:9

二级参考文献90

  • 1钱业青.一种高效的用于RF功率放大器线性化的自适应预失真结构[J].通信学报,2006,27(5):35-40. 被引量:23
  • 2康玲,王乘,姜铁兵.Volterra神经网络水文模型及应用研究[J].水力发电学报,2006,25(5):22-26. 被引量:9
  • 3李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 4Kenington P B. High Linearity RF Amplifier Design [ M]. Boston, MA: Artech House, 2000.
  • 5Zhu A, Wren M, Brazil T J. An efficient Volterra-based behavioral model for wideband RF power amplifiers[C]. IEEE MTT-S Int Microwave Symp Dig. PA, 2003. 787-790.
  • 6Schetzen A. The Volterra and Wiener Theories Nonlinear Systems[ M]. New York: Wiley, 1980.
  • 7Ding L, Zhou G T, Morgan D R, et al. A robust digital baseband predistorter constructed using memory polynomials[J]. IEEE Trans Commun, 2004, 52( 1 ) : 159-164.
  • 8Liu T J, Boumaiza D R, Ghannouchi M. Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks [ J ]. IEEE Trans Microwave Theory Tech, 2004, 52(3) : 1023-1033.
  • 9Isaksson M, Wisell D, Ronnow D. Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks [J]. IEEE Trans Microwave Theory Tech, 2005, 53 ( 11 ) : 3422-3428.
  • 10Luongvinh D, Kwon Y. A Fully Recurrent Neural Network-Based Model for Predicting Spectral Regrowth of 3G Handset Power Amplifiers with Memory Effects [ J ]. IEEE Microwave and Wireless Components Letters, 2006, 16(11) : 621-623.

共引文献74

同被引文献36

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部