期刊文献+

一类MIMO系统连续状态空间模型的参数辨识频域方法 被引量:5

Identification of Continuous State-space Model Parameters for a Class of MIMO Systems: A Frequency Domain Approach
下载PDF
导出
摘要 在连续时间状态空间模型的参数辨识中,针对系统状态微分项获取困难这一问题,对输入、状态及输出序列应用离散傅里叶变换,得到复数域线性回归方程,并给出了不同形式的最小二乘解估计式.以飞行器多输入多输出(Multiple-input multiple-output,MIMO)状态空间模型为例,设计正交多正弦信号对系统进行多通道同时激励,在一次激励的情况下就可以辨识出所有模型参数,从而提高辨识实验效率.仿真实验证明了方法的有效性和结果的准确性. In parameter identification of continuous-time statespace model, one of the difficulties is obtaining the derivative values of system states. To resolve this problem, we propose a discrete Fourier transform of the system inputs, states, and outputs sequences. As a result, a complex domain linear regression equation is derived. Then, different forms of the solution for the least-squares regression equation are presented. For the case study of a multiple-input multiple-output(MIMO) state-space model of an aircraft, orthogonal multi-sine signals are designed to excite all system input channels, thus, all model parameters can be identified simultaneously so as to enhance the efficiency of identification. Simulations show the effectiveness of the proposed method and accuracy of the results.
出处 《自动化学报》 EI CSCD 北大核心 2016年第1期145-153,共9页 Acta Automatica Sinica
基金 国家自然科学基金(61203095 61403407)资助~~
关键词 连续时间域 状态空间模型 傅里叶变换 复数域线性回归 正交多正弦 Continuous time domain state-space model Fourier transform complex domain linear regression orthogonal multi-sine
  • 相关文献

参考文献27

  • 1Jategaonkar R V. Flight Vehicle System Identification (A Time Domain Methodology). Reston: American Institute of Aeronautics and Astronautics, 2006.
  • 2Pintelon R, Schoukens J. System Identification: A Frequency Domain Approach (2nd Edition). New York: Wiley-IEEE Press, 2012.
  • 3Marelli D, Fu M Y. Exact identification of continuous-time systems from sampled data. In: Proceedings of 2007 IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu, HI: IEEE, 2007. III-757-III-760.
  • 4李幼凤,苏宏业,褚健.子空间模型辨识方法综述[J].化工学报,2006,57(3):473-479. 被引量:46
  • 5Van Overschee P, De Moor B L. Subspace Identification /or Linear Systems: Theory, Implementation, Applications. Dordrecht: KIuwer Academic Publishers, 1996.
  • 6McKelvey T, Akcay H, Ljung L. Subspace-based multivari- able system identification from frequency response data. IEEE Transactions on Automatic Control, 1996, 41(7): 960-979.
  • 7Houtzager I, van Wingerden J, Verhaegen M. Recursive predictor-based subspace identification with application to the real-time closed-loop tracking of flutter. IEEE Transac- tions on Control Systems Technology, 2012, 20(4): 934-949.
  • 8Verhaegen M, Dewilde P. Subspace model identification Part 1. The output-error state-space model identification class of algorithms. International Journal of Control, 1992, 56(5): 1187-1210.
  • 9Verhaegen M, Dewilde P. Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm. International Journal of Control, 1992, 56(5): 1211--1241.
  • 10Verhaegen M. Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica, 1994, 30(1): 61-74.

二级参考文献42

  • 1Favoreel W,De Moor B,Van Overschee P.Subspace state space system identification for industrial processes.Journal of Process Control,2000,10:149-155.
  • 2Jansson M,Wahlberg B.A linear regression approach to state-space subspace system identification.Signal Processing,1996,52:103-129.
  • 3Katayama T,Picci G.Realization of stochastic systems with exogenous inputs and subspace identification methods.Automatica,1999,35:1635-1652.
  • 4Wang J,Qin S J.A new subspace identification approach based on principle component analysis.Journal of Process Control,2002,12:841-855.
  • 5Huang B,Ding S X,Qin S J.Closed-loop subspace identification:an orthogonal projection approach.Journal of Process Control,2005,15:53-66.
  • 6De Cock K,De Moor B.Subspace identification methods[EB/OL].http://www.ece.sunysb.edu/~decock/subspace methods.
  • 7Viberg M.Subspace-based methods for the identification of linear time-invariant systems.Automatica,1995,31(12):1835-1851.
  • 8Van Overschee P,De Moor B.Subspace Identification for Linear Systems:Theory-Implementation -Applications.Dordrecht:Kluwer Academic Publishers,1996b.
  • 9Verhaegen M,Dewilde P.Subspace model identification(1):The output-error state-space model identification class of algorithms.International Journal of Control,1992a,56(5):1187-1210.
  • 10Verhaegen M,Dewilde P.Subspace model identification(2):Analysis of the elementary output-error state-space model identification algorithm.International Journal of Control,1992b,56(5):1211-1241.

共引文献45

同被引文献88

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部