期刊文献+

基于针对性字典的压缩图像稀疏超分辨率重建

Sparse representation-based super-resolution reconstruction based on targeted dictionary for compressed image
下载PDF
导出
摘要 为了有效地重建压缩低分辨率图像,提出一种基于针对性字典的压缩图像稀疏超分辨率重建算法。首先,根据压缩低分辨率图像的形成特点,对训练库图像进行针对性的下采样压缩编码处理,进行超完备字典的训练;然后,通过训练所得的针对性字典对压缩低分辨率图像进行稀疏表示的超分辨率重建。为进一步恢复图像的高频信息,进行了针对性残差字典训练,并对图像进行高频信息补偿,得到稀疏重建后的图像主观效果更加突出,客观评价参数也得到较大提升。实验结果表明,该算法对压缩图像的超分辨率重建更具针对性,具有良好鲁棒性和高效性。 In order to improve the super-resolution reconstruction performance of compressed low-resolution image, this paper proposes a sparse representation-based reconstruction algorithm by using targeted dictionary. Firstly,the dictionary training is aimed at the characteristics and forming of the compressed image, which training library is acquired the targeted process to make a more effective over-complete dictionary for the super-resolution. Then, the compressed low-resolution image is reconstructed by the targeted dictionary spares representation-based super-resolution. Meanwhile, for getting more detail information, the targeted residual dictionary is designed to compensate the loss of high-frequency information. Supported by the targeted dictionary, the method produces excellent SR results on a variety of images, and it achieves a significant improvement in PSNR, SSIM and competitive performance in visual quality. Extensive experiments manifest the robustness and efficiency of the proposed sparse representation-based super-resolution reconstruction based on targeted dictionary for compressed image.
出处 《电视技术》 北大核心 2016年第1期19-24,共6页 Video Engineering
基金 国家自然科学基金项目(61471248) 四川省教育厅2014年研究生教育改革创新项目(2014-教-034)
关键词 压缩图像 超分辨率重建 字典训练 稀疏表示 compressed image super - resolution reconstruction dictionary training sparse representation
  • 相关文献

参考文献14

  • 1SHEN M,XUE P, WANG C. Down-sampling based video coding using super- resolution technique [ J ]. IEEE transactions on circuits systbem, video technoly, 2011,21 (6) :755-765.
  • 2HUNG E M, QUEIROZ R L, BRANDI F, et al. Video super-resolution using codebooks derived from key-frames [ J]. IEEE transactions on circuits system, video technoly, 2012,22(9) :1321-1331.
  • 3BRANDI F, QUEIROZ R, MUKHERJEE D. Super resolu- tion of video using key frames [ C ]//Proc. IEEE ISCAS 2008. [S. 1. ] :IEEE Press,2008:321-324.
  • 4GLAISTER J, CHAN C, FRANKOVICH M, et al. Hybrid video compression using selective keyframe identification and patch-based super-resolution [ C ]//Proc. 2011 IEEE International Symposium on Multimedia 2011. [ S. 1. ]: IEEE Press ,2011 : 105-110.
  • 5YANG J,WRIGHT J, HUANG T S, et al. Image super-res- olution as sparse representation of raw image patches [ C ]// Proc. IEEE CVPR 2008. [ S. 1. ] : IEEE Press,2008 : 1-8.
  • 6YANG J, WRIGHT J, HUANG T S, et al. Image super-res- olution via sparse representation [ J]. IEEE transactions on image processing, 2010, 19(11 ) : 2861-2873.
  • 7WANG S,ZHANG L, LIANG Y, et al. Semi-coupled dic- tionary learning with applications to image super-resolution and photo-sketch synthesis[ C]//Proc. IEEE CVPR 2012. [ S. 1. ] :IEEE Press,2012:2216-2223.
  • 8YANG M C ,WANG C F. A serf-learning approach to single image super-resolution[ J]. IEEE transactions on muhime-dia, 2013, 15(3) :498-508.
  • 9LI H, QI H, ZARETZKI R. Beta process joint dictionary learning for coupled feature spaces with application to single image super - resolution [ C ]//Proc. IEEE CVPR 2013. [ S. 1. ] :IEEE Press, 2013:345-352.
  • 10ZHU Z,GUO F,YU H,et al. Fast single image super-res- olution via self-example learning and sparse representation [ J ]. IEEE transactions on multimedia, 2014, 16 ( 8 ) : 2178-2190.

二级参考文献12

  • 1MILYAZAWA R, KUDOH S, NAKACHF T,et al. Coding efficiency improvement on distributed vide coding utilizing super resolutim approach[ C]//Proc. International Symposium on lntelligen! Signal Prqx'essing and Communication Systems ( ISPACS 201 1 ). ChiangM ai : IEEE Press,2011 : 1-4.
  • 2BARRETO D,ALVAREZ L D, MOLINA R, KATSAGGELOS A K, et al. Region based super resolution for compression [ J ]. Muhidimen- sional Systems and Signal Processing, 2007, 18(2) :59-81.
  • 3GLAISTER J, CHAN C, FRANKOVICH M, et al. Hybrid video com- pression using selective keyframe identification and patch-based su- per-resolution [ C ]//Proc. IEEE International Symposium on Multi- media. IS. 1. ] :IEEE Press,2011:105-110.
  • 4SHUNSUKE ON,ISAO Y. Optimized JPEG-IMAGE decompression with super-resolution interpolation using multi-order total variation [ C]//Proc, 2013 20th IEEE International Conference on Image Processing (ICIP). Melbourne : IEEE Press,2013:474-478.
  • 5XIAO J,WANG C, HU X. Single image super-resolution in com- pressed domain based on field of expert prior[ C]//Proc. 2012 5th International Congress on Image and Signal Processing (CISP). Chongqing: 1EEE Press ,2012:607-611.
  • 6ZHU Lei,ZHU Yaolin,MAO Huan,et al. A new method for sparse signal denoising based on compressed sensing [ C ]//Proc. 2nd Inter- national Symposium on Knowledge Acquisition and Modeling. Wu- han: IEEE Press ,2009 : 35-38.
  • 7LIU Wei, MA Zhengming. Wavelet image threshold denoising based on edge detection [ C ]//Proc. IMACS Multi Conference Computa- tional Engineering in Systems Applications. Beijing:IEEE Press,2006:72-78.
  • 8KANG L W,CHUANG B C,HSU C C, et al. Self-learning-based single image super-resolution of a highly compressed Image [ C ]// Proc. 2013 IEEE 15th International Workshop on Multimedia Sig- nal Processing(MMSP). Pula : IEEE Press,2013:224-229.
  • 9YANG J C, WRIGHT J, HUANG via sparse representation [ J ] (TIP), 2010, 19(11): 2861 T,et al. Image super-resolution IEEE Trans. Image Processing 2873.
  • 10JI Zhengping, HUANG Wentao, BRUMBY S P. Learning sparse representation via a nonlinear shrinkage encoder and a linear sparse decoder[ C ]//Proc. IEEE International Joint Conference on Neural Networks ( IJCNN 2012 ). [ S. 1. ] : IEEE Press ,2012 : 1-8.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部