期刊文献+

互联网性能测量技术发展研究 被引量:8

Research on the Development of the Internet Performance Measurement Technologies
下载PDF
导出
摘要 互联网从一个实验网络成长为如今的超复杂系统,其服务性能一直备受关注.网络性能作为衡量网络服务的重要指标,广泛地应用于服务选择、拥塞控制、路由选择、网络性能优化、未来网络体系架构设计等方面.针对这些应用需求,学术界提出了众多的网络性能测量技术.互联网性能测量技术经过长期的发展与演变,其测量范围从小规模网络发展到覆盖全球,测量目标从点到点测量发展成大规模分布式P2P测量,测量对象从QoS转变到基于用户感受的QoE,其发展过程可分为3个阶段:传统的"所见即所得"测量、路径拟合的大规模分布式测量以及大数据驱动的QoE测量,每个阶段都具有独特的测量技术.最后,分析了互联网和网络应用的高速发展对网络性能测量技术带来的挑战,指出了未来需要研究的内容和发展方向. Nowadays, the Internet network has grown into a super-complex system from a small network in a laboratory, and its performance has been of great concern. The network performance is an important indicator of evaluating the network service performance, which can be widely used in service selection, congestion control, routing selection, network performance optimization, future network system architecture design, and so on. Many Internet performance measurement technologies are developed for these application requirements. In this paper, we systematically summarize the development of the existing network performance measurement technologies: first of all, the network performance measurement technologies is classified into different models, and the advantages and disadvantages of performance measurement technologies are well studied from different points of view; and then, the network performance measurement technologies can be divided into three stages: the measurement based on "what you see is what you get", the large-scale distributed measurement based on path composition, and the big data driven QoE measurement, so the development and evolution of performance measurement technologies are well understood; finally, the challenges of network performance measurement technologies are deeply analyzed, and with the rapid development of the Internet network applications, the content which is needed to be studied in the future is pointed out, as well as the direction of development.
作者 尹浩 李峰
出处 《计算机研究与发展》 EI CSCD 北大核心 2016年第1期3-14,共12页 Journal of Computer Research and Development
基金 国家"九七三"重点基础研究发展计划基金项目(2012CB315800) 国家自然科学基金项目(61170290 61222213)~~
关键词 网络性能测量 路径拟合 QOS QOE 机器学习 network performance measurement path composition quality of service(QoS) qualityof experience(QoE) machine learning
  • 相关文献

参考文献63

  • 1ITU-T. Rec E. 800 ? Terms and definitions related to qualityof service and network performance including dependability[EB/OL]. 1994 [2015-08-10]. https://www. itu. int/rec/T-REC-E. 800/en.
  • 2ITU-T. Rec I. 350 : General aspects of quality of service andnetwork performance in digital network, including ISDN[EB/OL]. 1993 [2015-08-10]. https://www. itu. int/rec/T-REC-I. 350/en.
  • 3ITU-T. Rec Y. 1540: Internet protocol data communicationservice-IP packet transfer and availability performanceparameters [EB/OL], 2011 [2015-08-10]. https://www. itu.int/rec/T-REC-Y. 1540/en.
  • 4Paxson V,Aimes G, Mahdavi J,et al. RFC 2330 :Framework for IP performance metrics [EB/OL]. 1998[2015-08-10]. https://tools. ietf. org/html/rfc2330.
  • 5Janne R. End-to-end quality of service ( QoS) concept andarchitecture (release 12): 3GPP TS 23. 107 V12. 0. 0[EB/OL]. 2014 [ 2015-08-10 ]. http://www. 3gpp. org/DynaReport/23107. htm.
  • 6Johnson O. End-to-end quality of service (QoS) concept andarchitecture ( release 12 ) : 3GPP TS 23. 207 V12. 0. 0[EB/OL]. 2014 [ 2015-08-10 ]. http://www. 3gpp. org/DynaReport/ 23207. htm.
  • 7Muuss M. The TTCP Program [EB/OL]. 2000 [2015-08-10]. http://ftp. arl. mil/ftp/pub/ttcp.
  • 8John W, Tafvelin S, Olovsson T. Passive Internetmeasurement ? Overview and guidelines based on experiences[J]. Computer Communications, 2010, 33(5) : 533-550.
  • 9张广兴,邱峰,谢高岗,童红霞.一种高效的网络流记录表示方法[J].计算机研究与发展,2013,50(4):722-730. 被引量:5
  • 10徐鹏,刘琼,林森.基于支持向量机的Internet流量分类研究[J].计算机研究与发展,2009,46(3):407-414. 被引量:59

二级参考文献137

  • 1程光,龚俭,丁伟,徐加羚.面向IP流测量的哈希算法研究[J].软件学报,2005,16(5):652-658. 被引量:54
  • 2黎文伟,张大方,谢高岗,杨金民.基于通用PC架构的高精度网络时延测量方法[J].软件学报,2006,17(2):275-284. 被引量:30
  • 3任丰原,董思颖,何滔,林闯.基于锁相环的时间同步机制与算法[J].软件学报,2007,18(2):372-380. 被引量:51
  • 4Madhukar A, Williamson C. A longitudinal study of P2P traffic classification [C]//Proc of the 14th IEEE Int Syrup on Modeling, Analysis, and Simulation. Washington, DC IEEE Computer Society, 2006:179-188
  • 5Moore A W, Papagiannaki K. Toward the accurate identification of network applications [G]//Dovrolis C. LNCS 3431: Proc of the PAM 2005. Heidelberg: Springer, 2005:41-54
  • 6Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark [C]//Proc of ACM SIGCOMM. New York: ACM, 2005.. 229-240
  • 7Roughan M, Sen S, Spatscheck O, et al. Class of service mapping for QoS: A statistical signature-hased approach to IP traffic classification [C]//Proc of ACM SIGCOMM Internet Measurement Conf 2004. New York: ACM, 2004: 135-148
  • 8Zuev D. Moore A W. Traffic classification using a statistical approach [G]//Dovrolis C. LNCS 3431: Proc of the PAM. Heidelberg, Germany: Springer, 2005:321-324
  • 9Moore A W, Zuev D. Internet traffic classification using Bayesian analysis techniques [C] //Proc of the 2005 ACM SIGMETRICS Int Conf on Measurement and Modeling of Computer Systems. New York: ACM, 2005: 50-60
  • 10Tan P N, Steinbach M, Kumar V. Introduction to Data Mining [M]. Boston: Addison Wesley, 2006

共引文献263

同被引文献51

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部