期刊文献+

反射激波作用重气柱的Richtmyer-Meshkov不稳定性的实验研究 被引量:3

Experimental study of Richtmyer-Meshkov instability in a heavy gas cylinder interacting with reflected shock wave
下载PDF
导出
摘要 采用高速摄影结合激光片光源技术,研究了反射激波冲击空气环境中重气体(SF6)气柱的Richtmyer-Meshkov不稳定性。通过在横式激波管试验段采用可移动反射端壁获得不同反射距离,实现了反射激波在不同时刻二次冲击处于演化中后期的气柱界面,得到了不同的界面演化规律。反射距离较小时,斜压机制对气柱界面形态演化的影响显著,界面衍生出二次涡对结构;反射距离较大时,压力扰动机制的影响显著,界面在流向上被明显地压缩,没有形成明显的涡结构。由气柱界面形态的时间演化图像得到了界面位置和整体尺度随时间的变化,对反射激波作用后气柱界面的演化进行了量化分析。 The Richtmyer-Meshkov(RM)instability in a heavy gas(SF6)cylinder surrounded by ambient air is experimentally studied using a high-speed video camera in combination with a laser sheet.The evolving gas cylinder at intermediate to later stages was reshocked by the reflected shock wave at different times along with the changes of the endwall distance,which was achieved by designing a movable endwall for the test section in a horizontal shock tube.It is demonstrated that different endwall distances result in different evolutions of the reshocked interface.For a short endwall distance,the effect of the baroclinic mechanism on the interface evolution is significant and a secondary vortex pair is formed,while for a long endwall distance,the effect of the pressure perturbation mechanism is significant and the streamwise compression of the interface instead of vortex structure is clearly observable.In addition,quantitative analysis is conducted by measuring the position and the integral scale of the interface from sequences of images.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2016年第1期87-92,共6页 Explosion and Shock Waves
基金 国家自然科学基金项目(11172278 11302201 11202195 11472253)
关键词 流体力学 RICHTMYER-MESHKOV不稳定性 反射激波 气柱 斜压涡量 fluid mechanics Richtmyer-Meshkov instability reflected shock wave gas cylinder baroclinic vorticity vortex
  • 相关文献

参考文献19

  • 1Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Communications on Pure and Applied Mathematics, 1960,13 (2) : 297-319.
  • 2Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dynamics, 1969,4 (5) :101-104.
  • 3Brouillette M. The Richtmyer-Meshkov instability[J]. Annual Review of Fluid Mechanics, 2002,34 (1) : 445-468.
  • 4Benjamin R F. An experimenter's perspective on validating codes and models with experiments having shock-accel- erated fluid interfaces[J]. Computing in Science and Engineering, 2004,6(5) :40-49.
  • 5Samtaney R, Zabusky N. Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: Models and scaling laws[J].Journal of Fluid Mechanics, 1994,269(12):45-78.
  • 6Jacobs J W. The dynamics of shock accelerated light and heavy gas cylinders[J]. Physics of Fluids, 1993,5 (9) : 2239-2247.
  • 7Prestridge K, Zoldi C A, Vorobieff P, et al. Experiments and simulations of instabilities in a shock-accelerated gas cylinder[C]//Schilling O. Proceedings of the 8th International Workshop on the Physics of Compressible Turbulent Mixing. Lawrence Livermore National Laboratory, 2001:36.
  • 8Vorobieff P, Mohamed N G, Tomkins C, et al. Scaling evolution in shock-induced transition to turbulence[J]. Physical Review E, 2003,68(6) : 065301.
  • 9Vorobieff P, Tomkins C, Kumar S, et al. Secondary instabilities in shock-induced transition to turbulence[J]. Ad- vances in Fluid Mechanics, 2004,40 : 139-148.
  • 10Tomkins C, Kumar S, Orlicz G, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. Journal of Fluid Mechanics, 2008,611(3): 131-150.

二级参考文献20

  • 1郭文灿,刘仓理,谭多望,刘金宏,邹立勇,张光升.平面弱激波加载下球形气泡演化的实验研究[J].高压物理学报,2009,23(6):460-466. 被引量:5
  • 2Richtmyer R D. Taylor Instability in Shock Acceleration of Compressible Fluids [J]. Commun Pur Appl Math, 1960,13(2) :297-319.
  • 3Meshkov E E. Instability of the Interface of Two Gases Accelerated by a Shock Wave [J]. Fluid Dyn, 1969,4(5): 101-104.
  • 4Lindl J D, McCrory R L, Campbell E. Progress toward Ignition and Burn Propagation in Inertial Confinement Fusion [J]. Phys Today,1992,45(9):32-40.
  • 5Yang J, Kubota T, Zukowski E E. Applications of Shock Induced Mixing to Supersonic Combustion [J]. AIAA J, 1993,31(5) :854-862.
  • 6Brouillette M. The Richtmyer-Meshkov Instability [J]. Annu Rev Fluid Mech, 2002,34: 445-468.
  • 7Zabusky N J. Vortex Paradigm for Accelerated Inhomogeneous Flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov Environments [J]. Annu Rev Fluid Mech, 1999,31: 495-536.
  • 8Dimotakis P E. Turbulent Mixing [J]. Annu Rev Fluid Mech,2005,37:329-356.
  • 9Kumar S, Hornung H G,Sturtevant B. Growth of Shocked C-aseous Interfaces in a Conical Geometry [J]. Phys Fluids,2003,15(10):3194-3208.
  • 10Ranjan D, Niederhaus J H J, Oakley J G, et al. Shock-Bubble Interactions:Features of Divergent Shock Refraction Geometry Observed in Experiments and Simulations [J]. Phys Fluids,2008,20(3):036101.

共引文献20

同被引文献24

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部