期刊文献+

基于信息敏感性的指标筛选与赋权方法研究 被引量:37

A study of indice screening and weighting method based on information sensitivity
原文传递
导出
摘要 为了解决现有主成分法存在的无法赋权及合理筛选指标的问题,提出了基于信息敏感性的指标筛选与赋权模型。本文的主要创新与特色:一是通过主成分占原始指标集信息的比例与每个被保留的主成分对指标的偏导数乘积的和,反映该指标对原始指标集信息的影响程度。依据信息敏感性指标筛选标准确定累积信息含量,通过累积信息含量的大小遴选指标。二是通过指标的信息敏感性占全部指标信息敏感性的比例进行指标的赋权,以使指标的权重反映不同指标相对信息含量的大小。最后,通过一个实例将提出的指标筛选方法与现有主成分指标筛选方法进行了对比分析,以此说明所提出的指标筛选方法的可行性及有效性。 This paper proposes an indices screening and weighting method based on information sensitivity to solve the problem of reasonable indices screening and weighting in existing researches. This paper has two main innovation points. One is multiplying the proportion of variance by partial derivative each retained principal component sub index, and use their sum to indicate effect degree of this index on the information of the original indicators set. The way of screening indi- cators is retaining the index for larger information sensitivity. The indices accumulated information contents are calculated by means of information sensitivity screening standard. And then, the indices are screened out based on the size of these. Two is calculating the percent of an index to all indices information sensitivity, take it as the weights of this index to reflect relative information content. Finally, the proposed method and the existing principal components method are eontrastively analyzed by a numerical illustration, on this account the feasibility and validity of the proposed method are illustrated.
出处 《科研管理》 CSSCI 北大核心 2016年第1期153-160,F0004,共9页 Science Research Management
基金 国家自然科学基金项目(71171031,2012-2015) 国家自然科学基金项目(71471027,2015-2018)
关键词 评价体系 指标筛选 指标赋权 信息敏感性 主成分分析 evaluation system index screening index weighting information sensitivity principal components analysis
  • 相关文献

参考文献18

  • 1Che -Tsung Tunga, Yu - Je Lee. A novel approach to cc?istructgrey principal component analysis evaluation model [ J ] ? ExpertSystems with Applications, 2009, (36) : 5916 - 5920.
  • 2Derya Kara. Evaluation of trace metal concentrations in someherbs and herbal teas by principal component analysis [ J].Food Chemistry, 2009,(114) : 347 -354.
  • 3Yongchen Li, Qin Zhang. The application of principal compo-nent analysis on financial analysis in real estate listed company[J] . Procedia Engineering, 2011,(15) : 4499 -4503.
  • 4Harun Uguz. A two - stage feature selection method for textcategorization by using information gain, principal componentanalysis and genetic algorithm [ J ]. Knowledge - Based Sys-tems, 2011, (24); 1024-1032.
  • 5Hanin Uguz. A hybrid system based on information gain andprincipal component analysis for the classification of transcra-nial Doppler signals [ J]. Computer Methods and Programs inBiomedicine, 2012, (28) : 548 -554.
  • 6Zheng Haoyao, Sheng Jinbao, Zhang Shichen, Sun Weiwei.Principal component analysis method applying to earthquake -damaged reservoir* s comprehensive Evaluation [ J]. ProcediaEngineering, 2012,(107) : 598 -609.
  • 7Shin Feng Chen, Shuyi Wang, CKen Yuan Chen. A simula-tion study using EFA and CFA programs based the impact ofmissing data on test dimensionality [ J]. Expert Systems withApplications, 2012, (39): 4026-4031.
  • 8刘可新,包为民,阙家骏,李佳佳,束慧连.基于主成分分析的K均值聚类法在洪水预报中的应用[J].武汉大学学报(工学版),2015,48(4):447-450. 被引量:27
  • 9罗家洪,万崇华,李俊花,许传志,耿菊敏,张晓磬.云南省卫生资源区域分类指标研究[J].中国医院统计,2002,9(1):6-8. 被引量:16
  • 10陆宁,姜丽宁,俞允凯,黄永安,李伟红.西安市房地产市场景气指标筛选研究[J].长安大学学报(社会科学版),2007,9(3):57-60. 被引量:5

二级参考文献77

共引文献214

同被引文献352

引证文献37

二级引证文献215

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部