期刊文献+

大肠杆菌合成1,2,4-丁三醇的途径优化 被引量:7

Optimization of 1,2,4-butanetriol synthetic pathway in Escherichia coli
原文传递
导出
摘要 1,2,4-丁三醇(BT)是一种在工业中有多种用途的重要的非天然化合物。文中通过将外源基因xdh和mdlC导入大肠杆菌BW25113表达,并敲除了xylA、xylB、yagE、yjhH、yiaE和ycdW等木糖和中间产物代谢旁路基因,构建了能够将D-木糖转化为BT的重组菌株。为优化BT合成途径,针对BT合成途径中的限速步骤——3-脱氧-D-甘油-戊酮糖酸的脱羧反应,进行了新酶的筛选和评价,获得了可显著提高反应效率的新的2-酮酸脱羧酶——KivD,并构建了表达该酶的重组菌株BW-025。在此基础上,通过初步条件优化,将BT产量提高至2.38g/L;进一步调节途径中各个酶的表达量,探究了它们对BW-025合成BT的影响,最终获得了BT产量较BW-025提高了48.62%的重组菌株BW-074。 1,2,4-Butanetriol(BT) is an important non-natural chemical with a variety of industrial applications. A recombinant Escherichia coli biosynthesizing BT from D-xylose was constructed by heterologously expressing xdh and mdl C, and knocking out competing pathway genes including xyl A, xyl B, yjh E, yag H and ycd W. To optimize BT synthesis pathway, the third catalytic step that catalyzes the decarboxylation reaction of 3-deoxy-D-glycero-pentulosonic acid was identified as a potential bottleneck. Consequently, 2-keto acid decarboxylases from three different microorganisms were screened, and the kiv D gene from Lactococcus lactis was found to increase BT titer by 191%. The improved strain BW-025 reached a final BT titer of 2.38 g/L under optimized transformation conditions. Attempts on synthetic pathway optimization were also made by fine-tuning the expression levels of each enzyme involved in the whole pathway based on BW-025. As a result, an xdh overexpressed recombinant strain, BW-074 was finally generated, with 48.62% higher BT production than that of BW-025.
出处 《生物工程学报》 CAS CSCD 北大核心 2016年第1期51-63,共13页 Chinese Journal of Biotechnology
基金 中国科学院知识创新工程重大项目(No.KSCX2-EW-G-5) 北京市自然科学基金(No.31170039)资助~~
关键词 D-木糖 1 2 4-丁三醇 大肠杆菌 2-酮酸脱羧酶 途径优化 D-xylose 1 2 4-butanetriol Escherichia coli 2-keto acid decarboxylase pathway optimization
  • 相关文献

参考文献25

  • 1Gouran|ou F, Kohsary I. Synthesis and characterization of 1,2,4-butanetrioltrinitrate. Asian J Chem, 2010, 22(6): 4221-4228.
  • 2Ren T, Liu DX. Synthesis of cationic lipids from 1,2,4-butanetriol. Tetrahedron Lett, 1999, 40(2): 209-212.
  • 3Valdehuesa KNG, Liu HW, Ramos KRM, et al. Direct bioconversion of D-xylose to 1,2,4-butanetriol in an engineered Escherichia coli. Process Biochem, 2014, 49(1): 25-32.
  • 4蔡征宇,王明亮.(S)-3-羟基-γ-丁内酯一步法合成(S)-1,2,4-丁三醇的研究[J].合肥工业大学学报(自然科学版),2010,33(6):915-917. 被引量:2
  • 5Lau MK. Synthesis and downstream purification of 1,2,4-butanetriol. UMI Microform 3348145. Ann Arbor, MI, USA: Pro Quest LLC, 2006.
  • 6Pisacane FJ. 1,2,4-Butanetriol: analysis and Synthesis. Silver Spring: Naval Surface Weapons Center, 1982.
  • 7罗阿利,乔建军,宋新潮.1,2,4-丁三醇的合成工艺研究[J].西北药学杂志,2007,22(3):144-145. 被引量:4
  • 8Tandon VK, Van Leusen AM, Wynberg H. Synthesis of enantiomerically pure (S)-(+)-3-hydroxytetrahydro furan, and its (R)-enantiomer, from malic or tartaric acid. J Org Chem, 1983, 48(16): 2767-2769.
  • 9Hanessian S, Ugolini A, Dub6 D, et al. Facile access to (5)-l,2,4-butanetriol and its derivatives. Can J Chem, 1984, 62(11): 2146-2147.
  • 10Niu W, Molefe MN, Frost JW. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J Am Chem Soc, 2003, 125(43): 12998-12999.

二级参考文献60

共引文献43

同被引文献41

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部