期刊文献+

重组酸性脲酶对黄酒中尿素和氨基甲酸乙酯的降解应用 被引量:15

Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease
原文传递
导出
摘要 氨基甲酸乙酯(Ethyl carbamate,EC)作为一种潜在致癌物质普遍存在于传统发酵食品中。利用酸性脲酶消除EC前体物质尿素是一种具有潜在重要应用价值的策略。本研究在前期成功实现食品级耐乙醇酸性脲酶高效表达制备的基础上,系统研究了重组酸性脲酶对尿素和EC的水解过程。重组酸性脲酶对模拟体系以及黄酒体系中的尿素具有很好的降解能力(60mg/L的尿素在25h内完全被降解),表明该重组酸性脲酶适用于黄酒中尿素的消除。虽然重组酸性脲酶也具有降解EC的催化活性,但在黄酒中添加重组酸性脲酶对EC的浓度无明显影响。进一步研究发现重组酸性脲酶对尿素和EC的Km值分别为0.714 7mmol/L和41.32mmol/L,研究结果为应用定向进化策略改造重组酸性脲酶实现同时水解尿素和EC提供了理论依据。 Ethyl carbamate(EC) as a potential carcinogen commonly exists in traditional fermented foods. It is important eliminate urea that is the precursors of EC in many fermented foods, including Chinese Rice wine. On the basis of achieving high-level overexpression of food-grade ethanol-resistant acid urease, we studied the hydrolysis of urea and EC with the recombinant acid urease. Recombinant acid urease showed degraded urea in both the simulated system with ethanol and Chinese Rice wine(60 mg/L of urea was completely degraded within 25 h), indicating that the recombinant enzyme is suitable for the elimination of urea in Chinese Rice wine. Although recombinant acid urease also has degradation catalytic activity on EC, no obvious degradation of EC was observed. Further investigation results showed that the Km value for urea and EC of the recombinant acid urease was 0.7147 mmol/L and 41.32 mmol/L, respectively. The results provided theoretical foundation for realizing simultaneous degradation of urea and EC.
出处 《生物工程学报》 CAS CSCD 北大核心 2016年第1期74-83,共10页 Chinese Journal of Biotechnology
基金 国家重点基础研究计划(973计划)(No.2012CB720802) 国家高技术研究发展计划(863计划)(No.2011AA100905) 国家博士后基金面上项目(No.2013 M540414)~~
关键词 重组酸性脲酶 氨基甲酸乙酯 尿素 食品安全 酶法降解 recombinant acid urease ethyl carbamate urea food safety enzymatic degradation
  • 相关文献

参考文献26

  • 1Ough CS, Crowell EA, Mooney LA. Formation of ethyl carbamate precursors during grape juice (Chardonnay) fermentation. I. Addition of amino acids, urea, and ammonia: effects of fortification on intracellular and extracellular precursors. Am J Enol Vitic, 1988, 39(3): 243-249.
  • 2Schlatter J, Lutz WK. The carcinogenic potential of ethyl earbamate (urethane): risk assessment at human dietary exposure levels. Food Chem Toxicol, 1990, 28(3): 205-211.
  • 3Schehl B, Senn T, Lachenmeier DW, et al. Contribution of the fermenting yeast strain to ethyl earbamate generation in stone fruit spirits. Appl Microbiol Biotechnol, 2007, 74(4): 843-850.
  • 4Ough CS, Trioli G. Urea removal from wine by an acid urease. Am J Enol Vitic, 1988, 39(4): 303-307.
  • 5Mobley HL, Hausinger RP. Microbial ureases:significance, regulation, and molecular characterization. Microbiol Rev, 1989, 53(1): 85-108.
  • 6Mobley HL, Island MD, Hausinger RP. Molecular biology of microbial ureases. Microbiol Rev, 1995, 59(3): 451480.
  • 7Qin Y J, Cabral JMS. Review properties and applications of urease. Biocatal Biotransform, 2002, 20(1): 1-14.
  • 8Moreau MC, Ducluzeau R, Raibaud P. Hydrolysis of urea in the gastrointestinal tract of "monoxenic" rats: effect of immunization with strains of ureolytic bacteria. Infect Immun, 1976, 13(1): 9-15.
  • 9Kakimoto S, Okazaki K, Sakane T, et al. Isolation and taxonomie characterization of acid urease-producing bacteria. Agric Biol Chem, 1989, 53(4): 1111-1117.
  • 10Suzuki K, Benno Y, Mitsuoka T, et al. Urease-producing species of intestinal anaerobes and their activities. Appl Environ Microbiol, 1979, 37(3): 379-382.

二级参考文献12

共引文献3

同被引文献245

引证文献15

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部