期刊文献+

高速动车组多质点模型的极大似然辨识 被引量:2

Maximum Likelihood Identification of Multiple Point Model for High-speed Electrical Multiple Units
下载PDF
导出
摘要 针对高速动车组多质点模型的参数估计问题,为列车稳定运行和提高效能,提出了适合于高速动车组多质点模型的极大似然辨识方法。首先,建立高速动车组的随机离散非线性状态空间模型,并将高速动车组参数的极大似然估计问题转化为期望极大的优化问题。给出适合于高速动车组的改进粒子滤波算法,构造了高速动车组的条件数学期望。然后,给出高速动车组参数优化的梯度搜索方法,进而得到高速动车组参数的辨识算法。以CRH3型高速动车组为对象进行仿真,结果表明提出的方法有效,为列车高速稳定运行提供了科学依据。 A maximum likelihood solution to the problem of identifying parameters for a multiple-point mass model of high-speed electrical multiple units(EMU) was presented in the paper. A stochastic discrete nonlinear statespace model for the multiple-point mass model was proposed to describe the dynamic behavior of multiple-point mass model of high-speed EMU. And the expectation maximization algorithm was employed solve the problem of ML pa- rameter estimates. In addition, an improved particle filter approach was given to estimate the state of high-speed EMU, which was used to compute approximation of conditional expectation. And the conditional expectation was opti- mized by gradient-based search method. Furthermore, the identification algorithm was given for parameter estimation of multiple-point mass model of high-speed EMU. Finally, numerical simulation study on parameter estimation for multiple-point mass model of high-speed EMU was implemented and the results show the effectiveness of the proposed ML identification method.
出处 《计算机仿真》 CSCD 北大核心 2016年第1期181-187,共7页 Computer Simulation
基金 国家自然科学基金项目(61263010 60904049) 江西省青年科学基金(20114BAB211014) 江西省教育厅研究项目(GJJ14399) 国家留学基金(2011836118)
关键词 高速动车组 系统辨识 极大似然 粒子滤波 梯度搜索 High-speed electrical multiple units System identification Maximum likelihood (ML) Particle filter Gradient-based search
  • 相关文献

参考文献14

  • 1翟婉明,金学松,赵永翔.高速铁路工程中若干典型力学问题[J].力学进展,2010,40(4):358-374. 被引量:26
  • 2衷路生,颜争,杨辉,齐叶鹏,张坤鹏,樊晓平.数据驱动的高速列车子空间预测控制[J].铁道学报,2013,35(4):77-83. 被引量:26
  • 3杨立兴,李峰,高自友,李克平.Discrete-time movement model of a group of trains on a rail line with stochastic disturbance[J].Chinese Physics B,2010,19(10):184-193. 被引量:3
  • 4H Dong, et al. Extended fuzzy logic controller for high speed train [J]. Neural Computing and Applications, 2013,22 (2): 321- 328.
  • 5Qi Song, Yong-duan Song, Tao Tang, Bin Ning. Computationally Inexpensive Tracking Control of High-Speed Trains With Traction/ Braking Saturation[ J]. IEEE Transactions on Intelligent Transpor- tation Systems, December 2011,12 (4) : 1116-1125.
  • 6SongQi, Song Yong-Duan. Data-Based Fault- Tolerant Control of High-Speed Trains with Traction/Braking Notch Nonlinearities and Actuator Failures[ J]. IEEE Transactions on Neural Networks, De- cember 2011,22 ( 12 ).
  • 7C Yang and Y Sun. Mixed H2/H ~ cruise controller design for high speed train [ J ]. International Journal of Control, 2001,74 (9) : 905 - 920.
  • 8衷路生,李兵,龚锦红,张永贤,祝振敏.高速列车非线性模型的极大似然辨识[J].自动化学报,2014,40(12):2950-2958. 被引量:27
  • 9S Gibson, B Ninness. Robust maximum- likelihood estimation of multivariable dynamic systems [ J ]. Automatica, 2005,41 ( I0 ) : 1667-1682.
  • 10A PDempster, et al. Maximum likelihood from incomplete data via the EM algorithm[C]. J. Roy. Statist. Soc. Ser, 1977,39: 1-38.

二级参考文献148

共引文献82

同被引文献18

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部