期刊文献+

基于深度表示模型的移动模式挖掘 被引量:2

Mining mobility patterns based on deep representation model
下载PDF
导出
摘要 针对时空轨迹中位置顺序和时间对于理解用户移动模式的重要性,提出了一种新的用户轨迹深度表示模型。该模型考虑到时空轨迹的特点:1)不同的位置顺序表示不同的移动模式;2)轨迹有周期性并且在不同的时间段有变化。首先,将两个连续的位置点组合成位置序列;然后,将位置序列和对应的时间块组合成时间位置序列,作为描述轨迹特征的基本单位;最后,利用深度表示模型为每个序列训练特征向量。为了验证深度表示模型的有效性,设计实验将时间位置序列向量应用到用户移动模式发现中,并利用Gowalla签到数据集进行了实验评测。实验结果显示提出的模型能够发现"上班""购物"等明确的模式,而Word2Vec很难发现有意义的移动模式。 Focusing on the fact that the order of locations and time play a pivotal role in understanding user mobility patterns for spatio-temporal trajectories, a novel deep representation model for trajectories was proposed. The model considered the characteristics of spatio-temporal trajectories: 1) different orders of locations indicate different user mobility patterns;2) trajectories tend to be cyclical and change over time. First, two time-ordered locations were combined in location sequence; second, the sequence and its corresponding time bin were combined in the temporal location sequence, which was the basic unit of describing the features of a trajectory; finally, the deep representation model was utilized to train the feature vector for each sequence. To verify the effectiveness of the deep representation model, experiments were designed to apply the temporal location sequence vectors to user mobility patterns mining, and empirical studies were performed on a real check-in dataset of Gowalla. The experimental results confirm that the proposed method is able to discover explicit movement patterns( e. g., working, shopping) and Word2 Vec is difficult to discover the valuable patterns.
出处 《计算机应用》 CSCD 北大核心 2016年第1期33-38,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61272092) 山东省自然科学基金资助项目(ZR2012FZ004) 山东省科技发展计划基金资助项目(2014GGE27178) 国家973计划项目(2015CB352500) 泰山学者计划基金资助项目~~
关键词 时空轨迹挖掘 用户移动模式 深度表示模型 时间位置序列向量 哈夫曼编码 spatio-temporal trajectory mining user mobility pattern deep representation model temporal location sequence vector Huffman coding
  • 相关文献

参考文献1

二级参考文献25

  • 1Zhang D,Guo B,Yu Z. The emergence of social and community intelligence[J].Computer,2011,(07):21-28.
  • 2Ratti C,Pulselli R M,Willians S,Frenchman D. Mobile Landscapes:using location data from cell phonnes for urban analysis[J].Envrionment and Planning B:Planning and Design,2006,(05):727-748.
  • 3Zhu H,Zhu Y,Li M,Ni L. SEER:metropolitan-scale traffic perception based on lossy sensory data[A].2009.217-225.
  • 4Calabrese F,Pereira F C,Lorenzo G D,Liu L,Ratti C. The geography of taste:analyzing cell-phone mobility and social[A].2010.22-37.
  • 5Girardin F,Blat J,Calabrese F,Fiote F,Ratti C. Digital Footprinting:uncovering tourists with user-generated content[J].IEEE Pervasive Computing,2008,(04):36-43.
  • 6Ahas R,Aasa A,Silm S,Tiru M. Mobile positioning data in tourism studies and monitoring:case study in Tartu,Estonia[A].2007.119-128.
  • 7Girardin F,Vaccari A,Gerber A,Biderman A Ratti C. Quantifying urban auractiveness from the distribution and density of digital footprints[J].International Journal of Spatial Data Infrastructures Research,2009.175-200.
  • 8González M,Hidalgo C,Barabasi A. Understanding individual human mobility patterns[J].Nature,2008.779-782.
  • 9McNamara L,Mascolo C,Capra L. Media sharing based on collocation prediction in urban transport[A].2008.58-69.
  • 10Froehlich J,Neumann J,Oliver N. Sensing and predicting the pulse of the city through shared bicycling[A].2009.1420-1426.

共引文献48

同被引文献31

  • 1GROSSI D, LORINI E, SCHWARZENTRUBER F. The ceteris pa- ribus structure of logics of game forms [ J]. Journal of Artificial In- telligence Research, 2015, 53(1): 91-126.
  • 2LIU W, WU C, FENG B, et al. Conditional preference in recom- mender systems [ J]. Expert Systems with Applications, 2015, 42 (2) : 774 -788.
  • 3MLON N. Learning and optimizing with preferences [ C]//ALT 2013: Proceedings of the 24th International Conferenee on Mgorithmie Learn- ing Theory, LNCS 8139. Berlin: Springer-Verlag, 2013:13-21.
  • 4SHI Y, LARSON M, HANJALIC A. Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future chal- lenges [J]. ACM Computer Surveys, 2014, 47(1) : Article No. 3.
  • 5GURUSWAMI M, SUNITHA T. Efficient robust interactive person- alized mobile search engine [J]. International Journal of Computer Trends and Technology, 2015, 19(1): 30-33.
  • 6WANG X, WANG Y. Improving content-based and hybrid music recommendation using deep learning [ C]//MM 14: Proceedings of the 22nd ACM International Conference on Multimedia. New York: ACM, 2014:627-636.
  • 7PROCACCIA A D, SHAH N, ZICK Y. Voting rules as error-correc- ting codes [J]. Artificial Intelligence, 2016, 231:1 -16.
  • 8DE AMO S, DIALLO M S, DIOP C T, et al. Contextual preference mining for user profile construction [ J]. Information Systems, 2015, 49:182 - 199.
  • 9DIMOPOULOS Y, MICHAEL L, ATHIENITOU F. Ceteris paribus preference elicitation with predictive guarantees [ C]// UCAI 09: Proceedings of the 21st International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 2009:1890 - 1895.
  • 10DE AMO S, BUENO M L P, ALVES G, et al. CPrefMiner: an al- gorithm for mining user contextual preferences based on Bayesian networks [ C]// Proceedings of the 2012 IEEE 24th International Conference on Tools with Artificial Intelligence. Piscataway, NJ: IEEE, 2012, 1: 114-121.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部