期刊文献+

基于Markov模型与轨迹相似度的移动对象位置预测算法 被引量:19

Moving object location prediction algorithm based on Markov model and trajectory similarity
下载PDF
导出
摘要 针对低阶Markov模型预测精度较差,以及多阶Markov模型预测稀疏率高的问题,提出一种基于Markov模型与轨迹相似度(MMTS)的移动对象位置预测算法。该方法借鉴了Markov模型思想对移动对象的历史轨迹进行建模,并将轨迹相似度作为位置预测的重要因素,以Markov预测模型的预测结果集作为预测候选集,结合相似度因素得出最终预测结果。实验结果表明,与k阶Markov模型相比,该方法的预测性能不会随着训练样本大小及阶数k的变化受到很大的影响,并且在大幅降低k阶Markov模型预测稀疏率的同时将预测精度平均提高了8%以上。所提方法不仅解决了k阶Markov模型的预测稀疏率高及预测精度不足的问题;同时提高了预测的稳定性。 Focusing on low prediction accuracy of the low-order Markov model and high sparsity rate of the high-order Markov model, a moving object location prediction algorithm based on Markov Model and Trajectory Similarity( MMTS) was proposed. The moving object's historical trajectory was modeled by using Markov thinking, and trajectory similarity was acted as an important factor of location prediction. With the result set predicted by Markov model as candidate set, the trajectory similarity factor was combined to get the final prediction. The experimental results show that, compared with the k-order Markov model, the predictive capability of the MMTS method is not greatly affected with the change of training sample size and the value of k, and the average accuracy is improved by more than 8% while significantly reducing the sparsity rate of k-order Markov model. So, the proposed method not only solves the problem of high sparsity rate and low prediction accuracy of the korder Markov model, but also improves the stability of prediction.
出处 《计算机应用》 CSCD 北大核心 2016年第1期39-43,65,共6页 journal of Computer Applications
基金 国家863计划项目(2012AA011004) 中央高校基本科研业务费专项资金资助项目(2013XK10) 国家自然科学基金煤炭联合基金重点项目(U1261201)~~
关键词 轨迹相似度 位置预测 移动对象 马尔可夫模型 稀疏性 trajectory similarity location prediction moving object Markov model sparsity
  • 相关文献

参考文献18

  • 1王兴,蒋新华,林劼,熊金波.基于概率后缀树的移动对象轨迹预测[J].计算机应用,2013,33(11):3119-3122. 被引量:4
  • 2BELLOTTI V, BEGOLE B, CHI E H, et al. Activity-based seren-dipitous recommendations with the Magitti mobile leisure guide [C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 2008: 1157-1166.
  • 3GIDóFALVI G, BORGELT C, KAUL M, et al. Frequent route based continuous moving object location-and density prediction on road networks [C]// Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2011: 381-384.
  • 4YING J J C, LEE W C, WENG T C, et al. Semantic trajectory mining for location prediction [C]// Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2011: 34-43.
  • 5ABRAHAM S, SOJAN LAL P. Spatio-temporal similarity of net-work-constrained moving object trajectories using sequence alignment of travel locations [J]. Transportation research part C: emerging technologies, 2012, 23: 109-123.
  • 6余雪岗,刘衍珩,魏达,田明.用于移动路径预测的混合Markov模型[J].通信学报,2006,27(12):61-69. 被引量:12
  • 7FANG D. Moving object trajectory based spatio-temporal mobility prediction [D]. Stockholm: Royal Institute of Technology, 2012.
  • 8CHEN M, LIU Y, YU X. NLPMM: a next location predictor with Markov modeling [C]// PAKDD 2014: Proceedings of the 18th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2014: 186-197.
  • 9BURBEY I, MARTIN T L. Predicting future locations using prediction-by-partial-match [C]// Proceedings of the First ACM International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments. New York: ACM, 2008: 1-6.
  • 10JACQUET P, SZPANKOWSKI W, APOSTOL I. An universal predictor based on pattern matching: preliminary results 1 [M]// Mathematics and computer science. Berlin: Springer, 2000: 75-85.

二级参考文献65

  • 1余雪岗,刘衍珩,魏达,田明.用于移动路径预测的混合Markov模型[J].通信学报,2006,27(12):61-69. 被引量:12
  • 2HADJIEFTHYMIADES S, PAPAYIANNIS S, MERAKOS L. Using path prediction to improve TCP performance in wireless/mobile communications[J]. IEEE Communications Magazine, 2003, 40(8):54-61.
  • 3KYRIAKAKOS M,et al. Enhanced path prediction for network resource management in wireless LAN[J]. IEEE Wireless Communications Magazine, 2003,10(6): 62-69.
  • 4LEVINE D A, AKYILDIZ I F. The shadow cluster concept for resource allocation and call admission in ATM-based wireless networks [J]. Mobile Computing and Networking, 1995, ( 11 ): 142-150.
  • 5SU W, GERLA M. Bandwidth allocation sWategies for wireless ATM networks using predictive reservation[A]. Proceedings of Global Telecommunications Conference (IEEE Globecom)[C]. 1998. 2245-2250.
  • 6VITTER J S, KRISHNAN P. Optimal prefetching via data compression[J]. Journal of the ACM, 1996, 43(5):771-793.
  • 7KRISHNAN P,VITTER J S.Optimal prediction for prefetching in the worst case[J]. SIAM Journal on Computing, 1998, 27(6): 1617-1636.
  • 8FEDER M, MERHAV N, GUTMAN M. Universal prediction of individual sequences[J]. IEEE Transactions on Information Theory,1992, 38(4): 1258-1270.
  • 9VICTOR F Y, LEUNG C M. Mobility-based predictive call admission control and bandwidth reservation in wireless cellular networks[J].Computer Networks, 2002,38(5):577-589.
  • 10BHATTACHARYA A, DAS S K. LeZi-Updatc: an informationtheoretic approach to track mobile users in PCS networks[J].ACM/Kluwer Wireless Networks, 2002, 8(2-3):121-135.

共引文献22

同被引文献138

引证文献19

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部