期刊文献+

基于贝叶斯模型的多标签分类算法 被引量:4

Multi-label classification algorithm based on Bayesian model
下载PDF
导出
摘要 针对二元关联法(BR)未考虑标签之间相关性,容易造成分类器输出在训练集中不存在或次数较少标签的不足,提出了基于贝叶斯模型的多标签分类算法(MLBM)和马尔可夫型多标签分类算法(MMLBM)。首先,建立仿真模型分析BR算法的不足,考虑到标签的取值应由属性置信度和标签置信度共同决定,提出MLBM。其中,通过传统的分类算法计算获得属性置信度,以及通过训练集得到标签置信度。然后,考虑到MLBM在计算属性置信度时必须考虑所有已分类的标签,分类器的性能容易受无关或弱关系的标签影响,所以使用马尔可夫模型简化置信度的计算提出了MMLBM。理论分析和仿真实验表明,与BR算法相比,MMLBM的平均分类精度在emotions数据集上提高约4.8%,在yeast数据集上提高约9.8%,在flags数据集上提高约7.3%。实验结果表明,当数据集中实例的标签基数较大时,相对于BR算法,MMLBM的准确性有较大的提升。 Since the relation of labels in Binary Relevance( BR) is ignored, it is easy to cause the multi-label classifier to output not exist or less emergent labels in training data. The Multi-Label classification algorithm based on Bayesian Model( MLBM) and Markov Multi-Label classification algorithm based on Bayesian Model( MMLBM) were proposed. Firstly, to analyze the shortcomings of BR algorithm, the simulation model was established; considering the value of label should be decided by the attribute confidence and label confidence, MLBM was proposed. Particularly, the attribute confidence was calculated by traditional classification and the label confidence was obtained directly from the training data. Secondly, when MLBM calculated label confidence, it had to consider all the classified labels, thus some of no-relation or weak-relation labels would affect performance of the classifier. To overcome the weakness of MLBM, MMLBM was proposed, which used Markov model to simplify the calculation of label confidence. The theoretical analyses and simulation experiment results demonstrate that, in comparison with BR algorithm, the average classification accuracy of MMLBM increased by 4. 8% on emotions dataset, 9. 8% on yeast dataset and 7. 3% on flags dataset. The experimental results show that MMLBM can effectively improve the classification accuracy when the label cardinality is larger in the training data.
出处 《计算机应用》 CSCD 北大核心 2016年第1期52-56,71,共6页 journal of Computer Applications
基金 四川省自然科学基金资助项目(14ZB0140)~~
关键词 多标签 贝叶斯模型 马尔可夫模型 K近邻 置信度 multi-label Bayesian model Markov model K Nearest Neighbor(KNN) confidence
  • 相关文献

参考文献19

  • 1ZHANG M, ZHOU Z. A review on multi-label learning algorithms [J]. IEEE transactions on knowledge and data engineering, 2014, 26(8): 1819-1837.
  • 2READ J. A pruned problem transformation method for multi-label classification [C]// Proceedings of the 2008 New Zealand Computer Science Research Student Conference. Hamilton, New Zealand: [s.n.], 2008: 143-150.
  • 3TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Random k-labelsets for multilabel classification [J]. IEEE transactions on knowledge and data engineering, 2011, 23(7): 1079-1089.
  • 4READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification [J]. Machine learning, 2011, 85(3): 333-359.
  • 5READ J, PFAHRINGER B, HOLMES G, et al. Classifiers chains for multi-label classification [C]// Proceedings of the 2009 European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2009: 254-269.
  • 6CHENG W, HVLLERMEIER E, DEMBCZYNSKI K J. An analysis of chaining in multi-label classification [C]// Proceedings of the 20th European Conference on Artificial Intelligence. Amsterdam: IOS Press, 2012: 294-299.
  • 7CHENG W, HüLLERMEIER E, DEMBCZYNSKI K J. Bayes optimal multilabel classification via probabilistic classifier chains [C]// Proceedings of the 27th International Conference on Machine Learning. New York: ACM, 2010: 279-286.
  • 8SUCAR L E, BIELZA C, MORALES E F, et al. Multi-label classification with Bayesian network-based chain classifiers [J]. Pattern recognition letters, 2014, 41(9):12-22.
  • 9YU Y, PEDRYCZ W, MIAO D. Multi-label classification by exploiting label correlations [J]. Expert systems with applications, 2014, 41(6): 2989-3004.
  • 10ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multilabel learning [J]. Pattern recognition, 2007, 40(7): 2038-2048.

同被引文献12

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部