期刊文献+

基于Gerschgorin理论稀疏度估计的宽带频谱感知算法

Wide-band spectrum sensing algorithm using sparsity estimation based on Gerschgorin theorem
下载PDF
导出
摘要 针对在低信噪比(SNR)情况下稀疏度欠估计和高信噪比情况下稀疏度过估计的问题,提出了一种基于Gerschgorin理论稀疏度估计的宽带频谱感知算法。首先,该算法利用Gerschgorin理论分离信号圆盘与噪声圆盘得到稀疏度估计值;然后,利用正交匹配追踪(OMP)算法得到频谱支撑集;最后,完成宽带频谱感知。仿真结果表明,所提算法、AIC-OMP算法和MDL-OMP算法频谱感知的检测概率达到95%信噪比分别需要4.6 d B、8.5 d B和9.7 d B;所提算法频谱感知的虚警概率在信噪比大于13 d B时趋近于0,明显低于BPD-OMP和GDRI-OMP算法的虚警概率,因此,所提算法对于压缩感知(CS)的信号稀疏度估计兼顾了低信噪比和高信噪比时的稀疏度估计性能,频谱感知性能优于AIC-OMP算法、MDL-OMP算法、BPD-OMP算法和GDRI-OMP算法。 To solve the problems of under-estimation of sparsity at low Signal-to-Noise Ratio( SNR) and over-estimation of sparsity at high SNR, a wide-band spectrum sensing algorithm using sparsity estimation based on Gerschgorin theorem was proposed. Firstly, Gerschgorin theorem was used to separate the signal disk and noise disk in order to estimate the sparsity.Then, the spectrum support set was obtained by using Orthogonal Matching Pursuit( OMP) algorithm. Finally, the wide-band spectrum sensing was accomplished. The simulation results show that, the SNR of the proposed algorithm, AIC-OMP( Akaike Information Criterion-Orthogonal Matching Pursuit) algorithm and MDL-OMP( Minimum Description Length-Orthogonal Matching Pursuit) algorithm need 4. 6 d B, 8. 5 d B and 9. 7 d B respectively while their detection probability reaching to 95%;the false alarm probability of the proposed algorithm tends to 0 when the SNR is higher than 13 d B, which is far lower than that of BPD-OMP( Bayesian Predictive Density-Orthogonal Matching Pursuit) algorithm and GDRI-OMP( Gerschgorin Disk Radii Iteration-Orthogonal Matching Pursuit) algorithm. Therefore, the proposed algorithm takes account of sparsity estimation performances under both low SNR and high SNR, and the spectrum sensing performance of the proposed algorithm is better than that of AIC-OMP algorithm, MDL-OMP algorithm, BPD-OMP algorithm and GDRI-OMP algorithm.
出处 《计算机应用》 CSCD 北大核心 2016年第1期87-90,95,共5页 journal of Computer Applications
关键词 宽带频谱感知 压缩感知 稀疏度 Gerschgorin理论 正交匹配追踪算法 wide-band spectrum sensing Compressed Sensing(CS) sparsity Gerschgorin theorem Orthogonal Matching Pursuit(OMP) algorithm
  • 相关文献

参考文献14

  • 1SUN H, NALLANATHAN A, WANG C, et al. Wideband spectrum sensing for cognitive radio networks: a survey [J]. IEEE wireless communications, 2013, 20(2): 74-81.
  • 2DONOHO D L. Compressed sensing [J]. IEEE transactions on information theory, 2006, 52(4): 1289-1306.
  • 3ZHI T, GIANNAKIS G B. Compressed sensing for wideband cognitive radios [C]// Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2007: 1357-1360.
  • 4MISHALI M, ELDAR Y C. From theory to practice: sub-Nyquist sampling of sparse wideband analog signals [J]. IEEE journal of selected topics in signal processing, 2010, 4(2): 375-391.
  • 5ZHANG Z, LI H, YANG D, et al. Space-time Bayesian compressed spectrum sensing for wideband cognitive radio networks [C]// Proceedings of the 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum. Piscataway, NJ: IEEE, 2010: 1-11.
  • 6赵知劲,张鹏,王海泉,尚俊娜.基于OMP算法的宽带频谱感知[J].信号处理,2012,28(5):723-728. 被引量:10
  • 7赵知劲,胡伟康.基于贝叶斯预测密度的弱匹配追踪频谱检测[J].计算机应用研究,2015,32(7):2119-2122. 被引量:1
  • 8张平平,伍俊良,胡兴凯.Gerschgorin圆盘的分离[J].西南师范大学学报(自然科学版),2011,36(3):1-3. 被引量:7
  • 9WU H, YANG J, CHEN F. Source number estimators using transformed Gerschgorin radii [J]. IEEE transactions on signal processing, 1995, 43(6): 1325-1333.
  • 10董姝敏,梁国龙.改进的盖尔圆源数目估计方法[J].哈尔滨工程大学学报,2013,34(4):440-444. 被引量:9

二级参考文献62

  • 1张杰,廖桂生,王珏.对角加载对信号源数检测性能的改善[J].电子学报,2004,32(12):2094-2097. 被引量:30
  • 2钟绍军.矩阵特征值的估计与定位[J].长沙大学学报,2005,19(5):21-23. 被引量:7
  • 3JIANG Lei CAI Ping YANG Juan WANG Yi-ling XU Dan.A new source number estimation method based on the beam eigenvalue[J].Journal of Marine Science and Application,2007,6(1):41-46. 被引量:2
  • 4HORN R A, JOHNSON C R. Matrix Analysis [M]. Cambridge: Cambridge University Press, 1985.
  • 5D L Donoho. Compressed Sensing[J]. IEEE Trans. on Information Theory. 2006,52 (4) : 1289 - 1306.
  • 6Zhi Tian, B. G Georgos. Compressed Sensing for Wide- band Cognitive Radios [ C ]. IEEE International Confer- ence on Acoustics, Speech and Signal Processing,2007, 1357-1360.
  • 7Y L. Polo, Y. Wang, A Pandharipande. Compressive Wide-band Spectrum Sensing [ C ]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2009,1655-1667.
  • 8Zhenghao Zhang, Husheng Li, Depeng Yang, Changxing Pei. Space-Time Bayesian Compressed Spectrum Sensing for Wideband Cognitive Radio Networks [ C ]. IEEE Sympo- sium on New Frontiers in Dynamic Spectrum,2010,1-ll.
  • 9Ying Wang, Pandharipande, A. Leus. Compressive Sam- pling Based MVDR Spectrum Sensing[ C]. 2010 2nd In- ternational Workshop on Cognitive Information Processing (CIP) ,2010:333-337.
  • 10M. Mishali, Y. C. Eldar. From Theory to Practice: Sub- Nyquist Sampling of Sparse Wideband Analog Signals [ J]. IEEE Journal of Selected Topics in Signal Process- ing,2010,4(2) :375-391.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部