期刊文献+

基于改进粒子群算法的行李条码阅读器布局优化 被引量:2

Optimization of baggage tag reader layout based on improved particle swarm optimization
下载PDF
导出
摘要 针对航空旅客托运行李时,检测行李条码的阅读器数量、位置、姿态存在很多不确定性问题,提出了动态种群-双适应值粒子群优化(DPDF-PSO)算法。首先,建立行李条码检测数学模型;然后,转化为约束优化问题;其次,通过标准粒子群优化(PSO)算法求解此优化问题;最后,依照模型特点对标准粒子群算法进行改进。仿真结果表明,与标准PSO算法相比,DPDF-PSO算法仿真时间降低了23.6%,目标函数值提高了3.7%。DPDF-PSO算法克服了标准粒子群优化算法中仿真时间慢、边界最优解难处理的缺点,阅读器布局方案能以较低的成本准确快速读取行李身份信息。 When civil aviation passengers check in, various uncertainty problems exist in the baggage tag readers' number, position and angle. To solve the problems, the Dynamic Population-Double Fitness Particle Swarm Optimization( DPDF-PSO) algorithm was proposed. Firstly, the mathematical model of baggage tag detector was established, then it was transformed into an optimization problem; secondly, the optimization problem was solved by standard Particle Swarm Optimization( PSO) algorithm; finally, the standard PSO algorithm was improved in accordance with the model features. The simulation results show that compared with standard PSO algorithm, the simulation time of the DPDF-PSO algorithm reduced by 23. 6%, the objective function value increased by 3. 7%. DPDF-PSO algorithm overcomes the shortage of long simulation time and troublesome problem of optimal boundary solutions existed in standard PSO algorithm. Identity information can be read quickly and accurately by readers layout at a lower cost.
出处 《计算机应用》 CSCD 北大核心 2016年第1期128-132,共5页 journal of Computer Applications
基金 天津市自然科学基金重点支持项目(12JCZDJC34200)~~
关键词 条码检测 建模 粒子群优化 动态种群 双适应值 tag detection modeling Particle Swarm Optimization(PSO) dynamic population double fitness value
  • 相关文献

参考文献15

  • 1YANG P, WU W, MONIRI M, et al. Efficient object localization using sparsely distributed passive RFID tags [J]. IEEE transactions on industrial electronics, 2013, 60(12): 5914-5924.
  • 2YOON W J, CHUNG S H. ISS-TCA: an identified slot scan-based tag collection algorithm for performance improvement in active RFID systems [J]. IEEE transactions on industrial electronics, 2012, 59(3): 1662-1672.
  • 3陈星舟,廖明宏,林建华.基于粒子群优化的无线传感器网络节点定位改进[J].计算机应用,2010,30(7):1736-1738. 被引量:39
  • 4DE FALCO I, TORTORA G, DARIO P, et al. An integrated system for wireless capsule endoscopy in a liquid-distended stomach [J]. IEEE transactions on biomedical engineering, 2014, 61(3): 794-804.
  • 5ABBASI A Z, ISLAM N, SHAIKH Z A. A review of wireless sensors and networks' applications in agriculture [J]. Computer standards & interfaces, 2014, 36(2): 263-270.
  • 6KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE, 1995: 1942-1948.
  • 7刘衍民,牛奔,赵庆祯.基于交叉和变异的多目标粒子群算法[J].计算机应用,2011,31(1):82-84. 被引量:14
  • 8MIYATAKE M, VEERACHARY M, TORIUMI F, et al. Maximum power point tracking of multiple photovoltaic arrays: a PSO approach [J]. IEEE transactions on aerospace and electronic systems, 2011, 47(1): 367-380.
  • 9李文莉,李郁侠.基于粒子群最小二乘支持向量机的水文预测[J].计算机应用,2012,32(4):1188-1190. 被引量:15
  • 10ISHAQUE K, SALAM Z, AMJAD M, et al. An improved Particle Swarm Optimization (PSO)-based MPPT for PV with reduced steady-state oscillation [J]. IEEE transactions on power electronics, 2012, 27(8): 3627-3638.

二级参考文献59

共引文献119

同被引文献22

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部