期刊文献+

结合全变差与自适应低秩正则化的图像压缩感知重构 被引量:9

Image compressive sensing reconstruction via total variation and adaptive low-rank regularization
下载PDF
导出
摘要 针对基于固定变换基的协同稀疏图像压缩感知(CS)重构算法不能充分利用图像自相似特性的问题,提出了一种改进的联合全变差与自适应低秩正则化的压缩感知重构方法。首先,通过图像块匹配法寻找结构相似块,并组成非局部相似块组;然后,以非局部相似块组加权低秩逼近替代协同稀疏表示中的三维小波变换域滤波;最后,结合梯度稀疏与非局部相似块组低秩先验构成重构模型的正则化项,并采用交替方向乘子法求解实现图像重构。实验结果表明,相比协同稀疏压缩感知重构(RCo S)算法,该方法重构图像的峰值信噪比平均可提升约2 d B,所提算法在准确描述图像非局部自相似结构特征的前提下显著提高了重构质量,更好地保留了图像的纹理细节信息。 Aiming at the problem that collaborative sparse image Compressive Sensing( CS) reconstruction based on fixed transform bases can not adequately exploit the self similarity of images, an improved reconstruction algorithm combining the Total Variation( TV) with adaptive low-rank regularization was proposed in this paper. Firstly, the similar patches were found by using image block matching method and formed into nonlocal similar patch groups. Then, the weighted low-rank approximation for nonlocal similar patch groups was adopted to replace the 3D wavelet transform filtering used in collaborative sparse representation. Finally, the regularization term of combining the gradient sparsity with low-rank prior of nonlocal similarity patch groups was embedded to reconstruction model, which is solved by Alternating Direction Multiplier Method( ADMM) to obtain the reconstructed image. The experimental results show that, in comparison with the Collaborative Sparse Recovery( RCo S) algorithm, the proposed method can increase the Peak Signal-to-Noise Ratio( PSNR) of reconstructed images about 2 d B on average, and significantly improve the quality of reconstructed image with keeping texture details better for nonlocal self-similar structure is precisely described.
出处 《计算机应用》 CSCD 北大核心 2016年第1期233-237,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61471400 61201268) 湖北省自然科学基金资助项目(2013CFC118) 中央高校基本科研业务费专项(CZW14018)~~
关键词 压缩感知 全变差 非局部方法 低秩逼近 协同重构 Compressive Sensing(CS) Total Variation(TV) nonlocal method low-rank approximation collaborative recovery
  • 相关文献

参考文献21

  • 1DONOHO D. Compressed sensing [J]. IEEE transactions on information theory, 2006, 52(4): 1289-1306.
  • 2CANDES E, TAO T. Near-optimal signal recovery from random projections: universal encoding strategies? [J]. IEEE transactions on information theory, 2006, 52(12): 5406-5425.
  • 3戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:215
  • 4MALLAT S, ZHANG Z. Matching pursuits with time-frequency dictionaries [J]. IEEE transactions on signal processing, 1993, 41(12): 3397-3415.
  • 5CHEN S, DONOHO D, SAUNDERS M. Atomic decomposition by basis pursuit [J]. SIAM journal on scientific computing, 1998, 20(1): 33-61.
  • 6张宗念,李金徽,黄仁泰.迭代硬阈值压缩感知重构算法——IIHT[J].计算机应用,2011,31(8):2123-2125. 被引量:10
  • 7LI C, YIN W, ZHANG Y. TVAL3: TV minimization by augmented Lagrangian and alternating direction algorithms [EB/OL]. [2014-11-07]. http://www.caam.rice.edu/-optimization/L1/TVAL3/.
  • 8BUADES A, COLL B, MOREL J. A non-local algorithm for image denoising [C]// CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2005, 2: 60-65.
  • 9DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering [J]. IEEE transactions on image processing, 2007, 16(8): 2080-2095.
  • 10沈燕飞,李锦涛,朱珍民,张勇东,代锋.基于非局部相似模型的压缩感知图像恢复算法[J].自动化学报,2015,41(2):261-272. 被引量:26

二级参考文献106

  • 1李敏,冯象初.基于总变分和各向异性扩散方程的图像恢复模型[J].西安电子科技大学学报,2006,33(5):759-762. 被引量:10
  • 2Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 3Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263.
  • 4Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592.
  • 5Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 6Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 7Romberg J.Imaging via compressive sampling.IEEE Signal Processing Magazine,2008,25(2):14-20.
  • 8Candes E J,Tao T.Decoding by linear programming.IEEE Transactions on Information Theory,2005,51(3):4203-4215.
  • 9Cand,et al.Sparsity and incoherence in compressive sampiing.Inverse Problems,2007,23(3):969-985.
  • 10Candes E,Tao T.The dantzig selector:Statistical estimation when P is much larger than n.Annals of Statistics,2007,35(6):2313-2351.

共引文献248

同被引文献34

  • 1DUANF,WANGY,YANGL,etal.Spatiotemporalconsistencyinstereoscopicvideodepthmapsequenceestimation[J].JournalofInformationandComputationalScience,2014,11(18):6497-6508.
  • 2MAMAHESHS,VISHALM,RAJRG.SARautomatictargetrecognitionusingdiscriminativegraphicalmodels[J].IEEETransactionsonAerospaceandElectronicSystems,2014,50(1):591-606.
  • 3Chong F T, Heek M J R, Ranganathan P, et al. Data center energy efficiency: improving energy efficiency in data centers beyond technology scaling[J]. IEEE De- sign & Test, 2014, 31(1): 93-104.
  • 4Wang Lin, Zhang Fa, Arjona Aroca J, et al., GreenDCN: a general framework for achieving energy efficiency in data center networks[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(1): 4-15.
  • 5Karami E and Dobre O A. Identification of SM-OFDM and AL-OFDM signals based on their second-order cy- clostationarity[J]. IEEE Transactions on Vehicular Technology, 2015, 64(3): 942-953.
  • 6DUAN F, WANG Y, YANG L, et al. Spatio-tempo- ral consistency in stereoscopic video depth map se- quence estimation [J]. Journal of information and com- putational science, 2014, 11 (18) : 6497-6508.
  • 7MAMAHESH S, VISHAL M, RAJ Raghu G. SAR automatic target recognition using discriminative graphical models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1) : 591-606.
  • 8苗启广,王宝树.基于局部对比度的自适应PCNN图像融合[J].计算机学报,2008,31(5):875-880. 被引量:39
  • 9汪荣贵,杨万挺,方帅,吴昊.基于小波域信息融合的MSR改进算法[J].中国图象图形学报,2010,15(7):1091-1098. 被引量:20
  • 10杨靖宇,张永生,邹晓亮,董广军.利用暗原色先验知识实现航空影像快速去雾[J].武汉大学学报(信息科学版),2010,35(11):1292-1295. 被引量:30

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部