期刊文献+

基于群体智能的三维碎片全局最优匹配方法 被引量:1

Global optimal matching method for 3D fragments based on swarm intelligence
下载PDF
导出
摘要 针对传统三维碎片整体匹配过程中误差积累的问题,提出了一种基于群体智能的全局最优匹配方法。该方法对破碎物体的三维多碎片全局匹配建立全局整体碎片匹配的数学模型,将碎片的整体最优匹配求解问题转换为求满足一定约束条件的最优匹配矩阵的组合优化问题,通过将自然社会认知优化算法进行离散化来求解该NP问题。典型实例分析验证了所提方法全局优化能力强,与初始位置无关,有较强的鲁棒性,为三维碎片整体匹配提供一个有效的方法。 Aiming at the error accumulation problem in the process of the traditional global matching of the threedimensional( 3D) models, a global optimal matching method based on swarm intelligences was proposed. The global matching process for multiple 3D fragments was abstracted, and then a mathematic model of the global optimal matching was set up, the solution of the optimal matching for multiple 3D fragments was converted to satisfy certain constraint conditions of the optimal match matrix of combinatorial optimization problem. A discretization algorithm based on hybrid social cognitive optimization algorithm was proposed to solve the NP( Non-deterministic Polynomial) problem. Finally, the classical example analyses verified that the proposed algorithm has global optimization ability and strong robustness without the initial position, and it provides an efficient method for global matching of the 3D fragments.
出处 《计算机应用》 CSCD 北大核心 2016年第1期266-270,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61203311 611721701) 陕西省教育厅基金资助项目(15JK1672 15JK1678) 西安市科技计划项目(CXY1516(4))~~
关键词 群体智能 三维模型 全局匹配 组合优化 社会认知优化 swarm intelligence three-dimensional model global matching combinatorial optimization Social Cognitive Optimization(SCO)
  • 相关文献

参考文献6

二级参考文献87

  • 1越民义.A SIMPLE PROOF OF THE INEQUALITY FFD (L)≤11/9 OPT(L)+1, ■L FOR THE FFD BIN-PACKING ALGORITHM[J].Acta Mathematicae Applicatae Sinica,1991,7(4):321-331. 被引量:6
  • 2潘小林,张丽艳,揭裕文,朱延娟.三维曲面部分匹配的算法研究[J].南京航空航天大学学报,2004,36(5):544-549. 被引量:13
  • 3单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:199
  • 4朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 5HUANG Q x, FLORY S, GELFAND N, et al. Reassembling frac- tured objects by geometric matching [ J]. ACM Transactions on Graphics, 2006, 25(3): 569-578.
  • 6PAPAIOANNOU G, KARABASSI E A, THEOHARIS T. Recon- struction of three-dimensional objects through matching of their parts [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. 24(1): 184-187.
  • 73D Puzzles--Reassembling fractured objects by geometric matching [ EB/OL]. [ 2010 - 11 - 29]. http://www, geometrie, tuwien, ac. at/ig/3dpuzzles, html.
  • 8PAPAIOANNOU G. Image gallery [ EB/OL]. [2010- 12- 27]. http://www, aueb. gr/users/gepap/.
  • 9Varady T, Martin R R, Cox J. Reverse engineering of geometric models-an introduction [J]. Computer-Aided Design, 1997, 29(4): 255-268
  • 10Johnson A E, Hebert M. Surface registration by matching oriented points [C] //Proceedings of International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa,1997:121-128

共引文献33

同被引文献11

  • 1程志刚,张立庆,李小林,吴晓华.基于Tent映射的混沌混合粒子群优化算法[J].系统工程与电子技术,2007,29(1):103-106. 被引量:32
  • 2Wang T. Global optimization for constrained nonlinear programming [M]. Urbana: Illinois University Press, 2001 : 8-11.
  • 3Xie X F, Zhang W J, Yang Z L. Social cognitive optimization for nonlinear programming problems [ C ]//International Conference on Machine Learning and Cybernetics. IEEE, 2002:779-783.
  • 4Xie X F, Zhang W J. Solving engineering design problems by social cognitive optimization[M]//Genetic and Evolutionary Computation-GECCO 2004. Berlin: Springer, 2004: 261-262.
  • 5Wolpert D H, Macready W G. No free lunch theorems for optimization[J].IEEE Transactions on Evolutionary Corn_ putation,1997,1(1):67-82.
  • 6Solis F J, Wets J B. Minimization by random search techniques[J]. Mathematics of Operations Research, 1981, 6(1):9-30.
  • 7Rong H. Study of adaptive chaos embedded particle swarm optimization algorithm based on Skew Tent map[C]//International Conference on Intelligent Control and Information Processing. IEEE, 2010 : 316-321.
  • 8孙家泽,王曙燕,张建科,曹小鹏.求解非线性互补问题的熵函数认知优化算法[J].计算机工程与应用,2010,46(21):40-42. 被引量:3
  • 9白云,徐刚刚,宋阳.基于改进社会认知算法的电力系统多目标无功优化[J].黑龙江电力,2012,34(2):120-124. 被引量:3
  • 10王立宏,王曙燕,孙家泽.一种分阶段组合测试数据生成算法[J].计算机应用与软件,2013,30(3):67-70. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部