期刊文献+

IaaS模式“云训练”资源预测-调度方法 被引量:1

Resource prediction-scheduling method in IaaS mode“cloud training”
下载PDF
导出
摘要 基础设施即服务(infrastructure as a service,IaaS)模式"云训练"是基于IaaS云计算提出的武器装备系统模拟训练的模式,根据用户需求对训练资源进行预测调度是提高训练效果的重要保证。分析了"云训练"中用户任务、资源需求特点,采用阈值法进行预处理,通过动态权值系综模型得到预处理结果。在此基础上,提出基于减法-模糊聚类的模糊神经网络的资源需求预测方法(subtractive-fuzzy clustering based fuzzy neural network,SFCFNN),并引入自适应学习率和动量项以提升收敛速度和稳定性。调度器根据预测结果实现用户需求与资源之间的动态匹配。实验表明该方法可精确预测用户资源需求,实现资源动态调度,有效提高资源利用率与训练效果。 Infrastructure as a service (IaaS) mode cloud training is a kind of equipment simulated training mode developed from IaaS mode cloud computing. In IaaS mode cloud training, resource scheduling based on users' demands is an important prerequisite for improving training efficiency and effect. Characters of resource requirements are analyzed and the threshold method is adopted to preprocess the data. Then a self-adaptive pre- diction method using subtractive-fuzzy clustering based fuzzy neural network (SFCFNN) prediction method is proposed. Self-adjusting learning rate and momentum weight are introduced into the method to improve the con- vergence and stability. Based on prediction results, the scheduler allocates resources for users dynamically. Sta- tistics indexes are used for validity check and results show that the proposed method can be used for accurate re- source demands predicting and resource dynamic scheduling. The resource utilization rate and training effect are improved.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第2期323-331,共9页 Systems Engineering and Electronics
基金 装备预研基金资助课题
关键词 基础设施即服务 云训练 模糊神经网络 阈值法 减法-模糊聚类 预测-调度 infrastructure as a service (IaaS) cloud training fuzzy neural network threshold method subtractive-fuzzy clustering prediction-scheduling
  • 相关文献

参考文献17

  • 1Qian L, Luo Z G, Du Y J, et al. Cloud computing., an overview[J:. Lecture Notes in Computer Science, 2009, 5931(1) :626 - 631.
  • 2Marston S, Li Z L, Bandyopadhyay S, et al. Cloud computing- the business perspective[C3// Proc. of the International Con- ference on System Science ,2011 : 1 - 11.
  • 3Jang S M, Choi W H, Kim W Y. Client rendering method for desktop virtualization services[J3. Etri Journal, 2013, 35 (2) :48- 351.
  • 4师雪霖,徐恪.云虚拟机资源分配的效用最大化模型[J].计算机学报,2013,36(2):252-262. 被引量:78
  • 5Ghodsi A, Zaharia M, Shenker S, et al. Choosy: max-min fair sharing for datacenter jobs with constraints[C3// Proc. of the 8th ACM European Conference on Computer Systems, 2013: 365 - 378.
  • 6Fang : Q, Wang F, Ge J W. A task scheduling algorithm based on load balancing in cloud computingI-C3// Proe. of the Interna- tional Conference of Web Information System and Mining, 2010: 271-277.
  • 7Wang Y, Wang J K, Wang C R. Research on resource scheduling of cloud based on improved particle swarm optimization algo rithm[C]// Proc. of the International Conference on Brain In- spired Cognitive Systems, 2013 : 118 - 125.
  • 8Huang L, Chen H S, Hu T T. Survey on resource allocation po- licy and job scheduling algorithms of cloud computing[J]. Jour hal of Software, 2013, 8(2): 480- 487.
  • 9Wu Z J, Liu X, Ni Z W, et al. A market-oriented hierarchical scheduling strategy in cloud workflow systems[J:. Journal of Supercomputing, 2011, 63(1): 256-293.
  • 10Xu B M, Zhao C Y, Hu E Z, et al. Job scheduling algorithm based on berger model in cloud environment[J:. Advances in Engineering Software, 2011, 42(7) : 419 - 425.

二级参考文献63

  • 1周文煜,陈华平,杨寿保,方君.基于虚拟机迁移的虚拟机集群资源调度[J].华中科技大学学报(自然科学版),2011,39(S1):130-133. 被引量:37
  • 2Foster I, Zhao Y, Raicu I, et al. Cloud computing and grid com- puting 360-degree compared[ A]. Proc of the Grid Computing Environments Workshop, GCE 2008 [ C ]. New York: IEEE, Press, 2008.1 - 10.
  • 3Buyya R, Yeo C S, Venugopal S, et al. Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility [ J ]. Future Generation Computer Systems,2009,25(6) :599 - 616.
  • 4Armbrust M, Fox A, Griffith R, et al. A view of cloud computing[J]. Communications of the ACM,2010,53(4) :50 - 58.
  • 5Mell P, Grance T. The NIST definition of cloud computing[J]. Communications of the ACM,2010,53(6) :50.
  • 6Wei G Y, Vasilakos A V, Zheng Y, et al. A game-theoretic method of fair resource allocation for cloud computing services [ J] .Journal of Supercomputing,2010,54(2) :252 - 269.
  • 7Zhao G, Liu J, Tang Y, et al. Cloud computing: A statistics aspect of users[ A]. Proc of the First International Conference of Cloud Computing, CloudCom 2009 [ C ]. Heidelberg: Springer Verlag Press, 2009. 347 - 358.
  • 8Shen X, Guo Y, Chen Q, et al. A multi-objective optimization evolutionary algorithm inciting preference information based on fuzzy logic[J]. Computational Optimization and Ap- plications, 2010,46( 1 ) : 159 - 188.
  • 9Ulker E,Arslan A.Automatic knot adjustment using an artificial immune system for B-spline curve approximation[ J]. Information Sciences,2009,179(10) : 1483 - 1494.
  • 10CJao X Z,Wang X,Ovaska S J. Fusion of clonal selection algorithm and differential evolution method in training cascade- correlation neural network [ J ]. Neurocomputing, 2009,72 ( 10 - 12) :2483 - 2490.

共引文献157

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部