期刊文献+

离散粒子群社区检测算法 被引量:2

Community detection algorithm via discrete PSO
下载PDF
导出
摘要 针对复杂网络中的社区检测问题,提出了一种基于节点影响力的离散粒子群社区检测方法。该方法以模块度密度作为目标函数,利用离散粒子群算法对其进行优化,在优化过程中提出了节点影响力的概念,其充分利用了网络中节点的相互关系检测网络中的社区结构。同时,在此基础上提出了基于节点影响力的粒子群初始化方法和粒子状态更新方法。利用人工网络数据集和真实网络数据集对所提算法进行测试,实验结果表明,所提算法具有较好的检测结果,能更好地对网络中社区进行划分。 Particle swarm optimization (PSO) is addressed into community detection problem, and an algo- rithm based on voting strategy is proposed. In contrast with other label propagation strategies, the main contri- bution is to take the impact of node into consideration, in which not only the number of nodes with the same la- bel in its neighbors, but also the degree of that node are considered. Special initialization and update approaches based on it are designed in order to make full use of it. Experiments on synthetic and real-life networks show the effectivity of proposed strategy. Experiments on real-life networks also demonstrate it is an efficacious way to solve community detection problem.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2016年第2期428-433,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61372167)资助课题
关键词 复杂网络 社区检测 离散粒子群 模块度密度 complex networks community detection discrete particle swarm optimization (DPSO) modularity density
  • 相关文献

参考文献29

二级参考文献154

共引文献164

同被引文献22

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部