期刊文献+

自适应多核组合相关向量机预测方法及其在机械设备剩余寿命预测中的应用 被引量:54

A Relevance Vector Machine Prediction Method Based on Adaptive Multi-kernel Combination and Its Application to Remaining Useful Life Prediction of Machinery
下载PDF
导出
摘要 针对支持向量机(Support vector machine,SVM)的惩罚系数难以确定、核函数必须满足Mercer定理等问题,相关向量机(Relevance vector machine,RVM)应运而生以解决上述问题,并在趋势预测等领域得到一定的应用。核函数是决定RVM预测精度的关键因素之一,目前的研究通常是人为选择单一核函数,因此增加了对参数的依赖性并降低了RVM预测的鲁棒性。为了解决以上问题,提出一种新的自适应多核组合RVM预测方法。该方法首先选择多个核函数,利用粒子滤波产生核函数权重,建立多核组合RVM集,然后经过不断地迭代预测、权值更新和重采样,自适应获取最优多核组合RVM,从而自适应融合多个核函数的特性,克服基于单一核函数RVM的局限,提高预测精度和鲁棒性。利用仿真对提出方法进行了验证,并将其应用于机械设备的剩余寿命预测,取得了比基于单一核函数RVM更好的预测效果。 In view of some shortcomings of support vector machine, for instance, it is difficult to select the regularization parameter and the kernel function must satisfy Mercer's condition, relevance vector machine (RVM) is developed and applied to the field of trend prediction. The performance of RVM, to a large extent, depends on the kernel function. However, a single kernel function is generally selected artificially and subjectively in current studies on RVM, which increases its dependency of the RVM to parameters and decreases the robustness in prediction process. To solve the problem, a new adaptive multi-kernel RVM is proposed for prediction. In the method, multiple kernel functions are selected originally and their weights are generated by the particle filter (PF) algorithm to construct multi-kernel RVM models. Then the optimal multi-kernel RVM model is obtained by iterative processes, i.e., predicting, weights updating and resampling. The effectiveness of the proposed method is validated by a simulation study and a ease study of remaining useful life prediction of machinery. The results demonstrate that the proposed method obtains higher prediction accuracies compared with the single kernel RVM models.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2016年第1期87-93,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金(51475355 51222503) 陕西省自然科学基础研究计划(2013JQ7011) 中央高校基本科研业务费专项资金(2012jdgz01)资助项目
关键词 多核相关向量机 机械设备 剩余寿命预测 multi-kernel relevance vector machine machinery remaining useful life prediction
  • 相关文献

参考文献17

  • 1雷亚国,何正嘉,訾艳阳.基于混合智能新模型的故障诊断[J].机械工程学报,2008,44(7):112-117. 被引量:106
  • 2SOUALHI A, MEDJAHER K, ZERHOUNI N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 52-62.
  • 3NIZAM M, MOHAMED A, HUSSAIN A. Dynamic voltage collapse prediction in power systems using support vector regression[J]. Expert Systems with Applications, 2010, 37(5): 3730-3736.
  • 4TRAN V T, THOM PHAM H, YANG B S, et al. Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine[J]. Mechanical Systems and Signal Processing, 2012, 32: 320-330.
  • 5申中杰,陈雪峰,何正嘉,孙闯,张小丽,刘治汶.基于相对特征和多变量支持向量机的滚动轴承剩余寿命预测[J].机械工程学报,2013,49(2):183-189. 被引量:138
  • 6TIPPING M E. The relevance vector machine[J]. Advances in Neural Information Processing Systems, 2000, 12.- 652-658.
  • 7TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211-244.
  • 8CAESARENDRA W, WIDODO A, YANG B S. Application of relevance vector machine and logistic regression for machine degradation assessment[J]. Mechanical Systems and Signal Processing, 2010, 24(4): 1161-1171.
  • 9WIDODO A, YANG B S. Application of relevance vector machine and survival probability to machine degradation assessment[J]. Expert Systems with Applications, 2011, 38(3): 2592-2599.
  • 10段青,赵建国,马艳.优化组合核函数相关向量机电力负荷预测模型[J].电机与控制学报,2010,14(6):33-38. 被引量:43

二级参考文献68

  • 1康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:498
  • 2雷亚国,何正嘉,訾艳阳,胡桥.基于特征评估和神经网络的机械故障诊断模型[J].西安交通大学学报,2006,40(5):558-562. 被引量:39
  • 3胡桥,何正嘉,张周锁,訾艳阳,雷亚国.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22. 被引量:44
  • 4张冰,孔锐.一种支持向量机的组合核函数[J].计算机应用,2007,27(1):44-46. 被引量:22
  • 5DUAN Qing, ZHAO Jianguo, NIU Lin, et al. Recession based on sparse bayesian learning and the applications in electric systems [ C ]//Fourth International Conference on Natural Computing, October 18-20, 2008, Jinan, China. 2008:106-111.
  • 6段青,赵建国,马艳.相关向量机与支持向量机在短期电力负荷预测中的比较[C]//全国电气工程博士论坛,成都:西南交通大学出版社,2008:314-319.
  • 7YU Weimiao, DU Tiehua, LIM Kahbin. Comparison of the support vector machine and relevant vector machine in regression and classification problems[ C ]//8th International Conference on Control, Automation, Robotics and Vision, December 6 -9, 2004, Kunming, China. 2004, 2:1309-1314.
  • 8BOWD C, MEDEIROS F A, ZHANG Zuobua, et al. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements [J]. Insestigative Ophthalmology & Visual ,Science, 2005,46(4) : 1322 - 1329.
  • 9STEINWART I. On the influence of the kernel on the generalization ability of support vector machines [ J ]. Journal of Machine Learning Research, 2001,2( 3 ):67-93.
  • 10VAPNIK V N. The Nature of Statistical Learning Theory [ M ]. New York : Springer-Verlag, 1995 : 11 - 13.

共引文献361

同被引文献502

引证文献54

二级引证文献798

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部