期刊文献+

基于匹配追踪的齿轮箱耦合调制振动信号分离方法研究 被引量:16

Matching Pursuit Method for Coupling Modulation Signal Separation of Gearbox Vibration
下载PDF
导出
摘要 故障齿轮箱的振动信号通常耦合着稳态调制和冲击调制成分。信号稀疏表示的成功应用表明了它对特征提取的有效性,但主要集中在冲击成分的提取,而忽略了稳态调制成分,且设计的字典没有明确的物理意义,通用性较差。提出一种新的基于匹配追踪的齿轮箱耦合调制信号分离方法。设计的基于幅值调制谐波原子的稳态调制字典和基于单自由度冲击响应原子的冲击调制字典,融合了齿轮箱运行工况参数和结构特征,物理意义明确,通用性广。仿真和试验验证了该方法在强噪声背景下和混合调制成分完全耦合情况下的有效性。通过幅值系数恢复,可有效改进匹配追踪算法的过匹配问题。 Vibration of faulty gearbox usually consists of smooth modulation and impulse modulation components. The successful application of signal sparse representation has demonstrated its effectiveness of feature extraction. However, it mainly concentrates in the impulse components but ignores the smooth modulation components, and the designed dictionary is lack of clear physical meaning, which brings poor universality. A novel method based on matching pursuit is proposed for coupling modulation signal separation of gearbox vibration. The designed smooth modulation dictionary based on the amplitude modulation atom fuses the operation and structure characteristics of gearbox, as well as the designed pulse modulation dictionary based on the impulse response function of single-degree-freedom system. So the dictionaries have clear physical meaning and wide universality. Simulation and experiment test validates the effectiveness of the proposed method, even if under the condition of strong noise and fully coupled modulation signals. The approach of amplitude recovery can significantly reduce the influence of over-matching.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2016年第1期102-108,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金(51475169 51475160) 广东省自然科学基金团队(S2013030013355)资助项目
关键词 齿轮箱故障诊断 匹配追踪 相关滤波 耦合调制分离 gearbox fault diagnosis matching pursuit correlation filtering coupling modulation separation
  • 相关文献

参考文献15

  • 1DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
  • 2LUSTIG M, DONOHO D, PAULY J, M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magn. Reson. Med., 2007, 58(6): 1182-1195.
  • 3RUBINSTEIN R, BRUCKSTEIN A, ELAD M. Dictionaries for sparse representation modeling[J]. Processingofthe IEEE, 2010, 98(6): 1045-1057.
  • 4QIN Y, MAO Y F, TANG B P. Vibration signal component separation by iteratively using basis pursuit and its application in mechanical fault detection[J]. Journal of Sound and Vibration, 2013, 332(20): 5217-5235.
  • 5YAN R Q, GAO R X, CHEN X F. Wavelets for fault diagnosis of rotary machines : A review with applications[J]. Signal Processing, 2014, 96: 1-15.
  • 6CHEN X F, DU Z H, LI J M, et al. Compressed sensing based on dictionary learning for extracting impulse components[J]. Signal Processing, 2014, 96: 94-109.
  • 7RUBINSTEIN R, ZIBULEVSKY M, ELAD M. Double sparsity: Learning sparse dictionaries for sparse signal approximation[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1553-1564.
  • 8OPHIR B, LUSTIG M, ELAD M. Multi-scale dictionary learning using wavelets[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 1014-1024.
  • 9SKRETTING K, ENGAN K. Recursive least squares dictionary learning algnrithm[J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2121-2130.
  • 10TANG H F, CHEN J, DONG G M. Sparse representation based latent components analysis for machinery weak fault detection[J]. Mechanical Systems and Signal Processing, 2014, 46(2): 373-388.

二级参考文献2

  • 1杜海平 张亮 史习智.柴油发动机缸盖振动信号时域识别方法研究[J].振动工程学报,2000,13:152-155.
  • 2孟庆丰.基于应用内涵研究故障特征提取技术[J].振动工程学报,2000,13:97-101.

共引文献17

同被引文献115

引证文献16

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部