期刊文献+

三维可视化的水声数据降噪算法 被引量:2

3D Visualized De-noising Algorithm for Underwater Acoustic Data
下载PDF
导出
摘要 针对现有二维水声成像去噪算法不能同时有效抑制水声数据中加性噪声和乘性噪声的现状,提出结合模糊中值滤波和小波软阈值滤波的三维可视化水声数据降噪算法。根据复合噪声模型的特点,将三维水声数据分为多个相邻的二维切片数据,通过基于三维滤波窗口的模糊中值滤波、考虑相邻切片系数相关性与小波系数尺度间相关性的小波软阈值滤波,分层去除水声数据中的加性噪声和乘性噪声。实验结果表明,该算法能降低原始水声数据中的噪声,提高数据连续性和对比度,为观察与探测水下目标提供良好的视觉条件。 Aiming at the problem that traditional underwater acoustic imaging de-noising algorithms can not effectively suppress the additive noise and multiplicative noise at the same time,a 3D visualized underwater acoustic data de-nosing algorithm based on fuzzy median filtering and wavelet soft-threshold filtering is proposed.This algorithm analyzes the characteristics of composite noise model,and divides the 3D data into several 2D data in the concrete operating process.In order to hierarchically remove the additive and multiplicative noise in the underwater acoustic data,it adopts a 3D filter window in the implementation of fuzzy median filtering,and not only considers the inter-scale correlation of wavelet coefficients of 2D plane data,but also considers the correlation of wavelet coefficients of adjacent plane data in the process of soft threshold filtering.Experimental results show that the proposed algorithm reduces the noise in the original data,improves the data continuity and contrast,and it provides a good visual conditions for the observation and detection of underwater acoustic target.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第1期25-30,共6页 Computer Engineering
基金 国家自然科学青年基金资助项目(60802047)
关键词 水声数据 噪声模型 模糊中值滤波 小波变换 降噪 可视化 underwater acoustic data noise model fuzzy median filtering wavelet transform de-noising visualization
  • 相关文献

参考文献18

  • 1Thijssen J M.Ultrasonic Speckle Formation,Analysis and Processing Applied to Tissue Characterization[J].Pattern Recognition Letters,2003,24(2):659-675.
  • 2喻琪,夏顺仁,丛卫华,张峰山,杨晓帆.基于小波系数相关性和模糊理论的声纳图像处理[J].浙江大学学报(工学版),2008,42(12):2151-2155. 被引量:5
  • 3Gonzalez R C,Woods R E.数字图象处理[M].阮秋琦,阮宇智,译.3版.北京:电子工业出版社,2011.
  • 4Lopes A,Nezry E,Touzi R,et al.Maximum a Posteriori Speckle Filtering and First Order Texture Models in SAR Images[C]//Proceedings of International Geoscience and Remote Sensing Symposium.Washington D.C.,USA:IEEE Press,1990:2409- 2412.
  • 5Frost V S,Stiles J A,Shanmugan K S,et al.A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,3(2):157-166.
  • 6Kuan D T,Sawchuk A A,Strand T C,et al.Adaptive Noise Smoothing Filter for Images with Signal-dependent Noise[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,3(2):165-177.
  • 7王芳,满益云.基于模糊中值滤波的椒盐噪声去除方法[J].模糊系统与数学,2012,26(1):166-174. 被引量:26
  • 8Donohod D L,Johnstoneim I M.Ideal Spatial Adaptation by Wavelet Shrinkage[J].Biometrika,1994,81(3):425-455.
  • 9Donohod D L.De-noising by Soft-thresholding[J].IEEE Transactions on Information Theory,1995,41(3):613-627.
  • 10李昌顺,杨浩,裴蕾.基于高密度离散小波变换的改进图像降噪方法[J].计算机工程,2012,38(1):211-214. 被引量:3

二级参考文献58

  • 1谢美华,王正明.基于边缘定向增强的各向异性扩散抑噪方法[J].电子学报,2006,34(1):59-64. 被引量:27
  • 2DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika, 1994, 81 (3) : 425 - 455.
  • 3DONOHO D L.Denoising by soft-thresholding [J]. IEEE Transactions on Information Theory, 1995, 41:613 - 627.
  • 4CHANG S, YU B, VETTERLI M. Adaptive wavelet thresholding for image denoising and compression [J].IEEE Transactions on Image Processing, 2000, 9:1532 - 1546.
  • 5ZHAO Zhi-dong. Wavelet shrinkage denoising by generalized threshold function [C] // Proeeedings of the Fourth International Conference on Machine Learning and Cyberneties,Guangzhou,China:[s. n. ], 2005, 9:5501-5505.
  • 6CHEN G Y, BUI T D, KRZYZAK A. Image denoising using neighbouring wavelet coefficients [C]// International Conference on Acoustics, Speech, and Signal Processing. Quebec, Canada : [s. n. ],2004 : 917 - 920.
  • 7WU Ji-ying, RUAN Qiu-qi. Combining adaptive PDE and wavelet shrinkage in image dennising with edge enhancing property [C]// Proceedings of the 18th International Conference on Pattern Recognition. Washington: IEEE, 2006: 718-721.
  • 8LI Jun, CHEN Guang-meng, HU Bo. Image denoising based on fuzzy in wavelet domain [C] // Instrumentation and Measurement Technology Conference. Ontario, Canada: IEEE, 2005: 2019-2023.
  • 9LIU J, MOULIN P, Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients [J]. IEEE Transactions on Image Processing, 2001, 10(11) : 1647 - 1658.
  • 10MALLAT S, HWANG W L. Singularity detection and processing with wavelets [J]. IEEE Transactions on Information Theory, 1992, 32 : 617 - 643.

共引文献49

同被引文献22

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部