期刊文献+

基于最小描述长度的图分割结构检测改进算法

Improved Algorithm of Graph Partitioning Structure Detection Based on Minimum Description Length
下载PDF
导出
摘要 针对现有图分割变化检测(GPCD)算法中易出现重复分割及忽略图形变化成本的不足,利用概率树表示图分割结构的概率模型。将GPCD问题转化为基于最小描述长度的树变化检测问题,利用树算法来求解GPCD问题。实验结果表明,在考虑变化成本的情况下,与GraphScope基准算法相比,TREE算法具有较低的虚警率和较高的检测精度。 Aiming at the disadvantages of the existing Graph Partitioning Change Detection(GPCD) algorithm like repeated segmentation and ignoring change cost of images,it employs probabilistic trees to represent probabilistic models of graph partitioning structures.Then reduce GPCD into the issue of detecting changes of trees on the basis of the Minimum Description Length(MDL) principle.It proposes TREE algorithm for solving the GPCD problem.Simulation experimental results show that,by taking the cost of changes into consideration,TREE realizes significantly less False Alarm Rate(FAR) for change detection than the baseline method called GraphScope.And it is able to detect changes more accurately than GraphScope.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第1期231-236,242,共7页 Computer Engineering
基金 河南省科技攻关计划基金资助项目(122102210430)
关键词 图分割变化检测 最小描述长度 概率树 变化成本 虚警率 Graph Partitioning Change Detection(GPCD) Minimum Description Length(MDL) probabilistic tree cost of change False Alarm Rate(FAR)
  • 相关文献

参考文献14

  • 1文政颖,于海鹏.基于多Gamma分布模型的SAR图像直方图分割算法[J].计算机工程与设计,2014,35(6):2104-2108. 被引量:11
  • 2汪云飞,毕笃彦,孙毅,孙超,南栋.一种采用双势阱策略的小直径图分割方法[J].计算机应用与软件,2013,30(4):275-278. 被引量:3
  • 3Stanton I,Kliot G.Streaming Graph Partitioning for Large Distributed Graphs[C]//Proceedings of the 18th ACM International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2012:1222-1230.
  • 4Bansal N,Feige U,Krauthgamer R,et al.Min-max Graph Partitioning and Small Set Expansion[J].SIAM Journal on Computing,2014,43(2):872-904.
  • 5Nishimura J,Ugander J.Restreaming Graph Parti-tioning:Simple Versatile Algorithms for Advanced Balancing[C]//Proceedings of the 19th ACM Inter-national Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2013:1106-1114.
  • 6López-Ruiz R,Saudo J,Romera E,et al.Statistical Complexity and Fisher-Shannon Information:Appli-cations[M].Berlin,Germany:Springer,2011.
  • 7Silva T C,Zhao Liang.Stochastic Competitive Learning in Complex Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(3):385-398.
  • 8Chakrabarti D,Papadimitriou S,Modha D S,et al.FullyAutomatic Cross-associations[C]//Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2012:79-88.
  • 9Chakrabarti D.Autopart:Parameter-free Graph Partitioning and Outlier Detection[M].Berlin,Germany:Springer,2004.
  • 10Sun Jimeng,Faloutsos C,Papadimitriou S,et al.Gra-phscope:Parameter-free Mining of Large Time-evolving Graphs[C]//Proceedings of the 13th ACM International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2007:687-696.

二级参考文献22

  • 1Nikhil R Pal, Sankar K Pal. A Review on Image Segmentation Tech- niques[ J]. Pattern Recognition, 1993,26 (9), 1277 - 1294.
  • 2Reinhard Diestel. Graph Theory[ M ]. 4th ed. German : springer - ver- lag, 2010:451-471.
  • 3Camille Couprie, Leo grady. Power Watersheds : A New Image Segmen- tation Framework Extending Graph Cuts, Random Walker and Optimal Spanning Forest [ C ]//Proceedings of the 12^th International Conference on Computer Vision(ICCV). Kyoyo: IEEE Inc,2009:731 -738.
  • 4Chen M, Liu M, Liu J. Isoperimetrie Cut on A Directed Graph[C]// Proceedings of 2010 Computer Vision and Pattern Recognition (CVPR). San Francisco: IEEE Inc, 2010:2109-2116.
  • 5Shi J, Malik J. Normalized Cuts and Image Segmentation [ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 ( 8 ) : 888 - 905.
  • 6Grady L, Schwartz E L. Isoperimetric Graph Partitioning for Image Segmentation[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3 ): 469-475.
  • 7Watts D J. Small worlds:The dynamics of networks between order and randomness[ M]. Princeton studies in complexity. Princeton Universi- ty Press, Princeton,N. J,2003.
  • 8Chen Weita, Liu Weichuan, Chen Mingsyan. Adaptive Color Featutre Extraction Based on Image Color Distributions[ J]. IEEE Transactions on Image Processing, 2010,19( 8 ) :2005 -2016.
  • 9Ning Jifeng, Zhang Lei, David Zhang. Robust object Tracking Using Joint Color-Texture Histogram [ J ]. Pattern Recognition and Artificial Intelligence, 2009,23 ( 7 ) : 1245 - 1263.
  • 10李军侠,水鹏朗.基于广义高斯最大似然估计的小波域类LMMSE滤波算法[J].电子与信息学报,2007,29(12):2853-2857. 被引量:5

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部