期刊文献+

基于八悬臂梁-中心质量块结构MEMS压电振动能量采集器 被引量:5

MEMS Piezoelectric Vibration Energy Harvester Based on Eight Cantilever Beams-Center Mass Block
下载PDF
导出
摘要 高能量密度输出、低频范围响应、环境适应性强的自供电振动能量采集器已成为微能源技术领域的一个重要发展方向。提出一种d31型工作模式下MEMS压电式振动能量采集器,设计八悬臂梁-中心质量块结构代替传统的单悬臂梁结构,利用溶胶-凝胶(Sol-Gel)技术在每个悬臂梁上异质集成制备锆钛酸铅(Pb(Zr_(0.53)Ti_(0.47)O_3,PZT)压电功能厚膜层,通过MEMS工艺和引线键合技术完成器件础结构制造。输出性能测试结果表明,器件一阶谐振频率为41 Hz,3 gn加速度激励下输出电压峰峰值为264.00 m V;在器件两端加载3.00 MΩ负载时输出功率最大,为0.72 n W。 The self-powered vibration energy harvester,which has high output energy density,low frequency rangeresponse and strong environment adaptation,has been an important developing direction of micro-energy technolo-gy. MEMS vibration energy harvester based on piezoelectric effect in d31 mode is presented,of which the foundationstructure of eight cantilever beams-center mass block is designed to replace the traditional single-cantilever struc-ture. The heterogeneous integration manufacturing of the PZT piezoelectric layer is achieved on each cantilever bySol-Gel method. And the device is fabricated by using the MEMS micromachining process and wire bonding technol-ogy. The output performance results show that the device produced 264.00 m V and 0.72 n W with an optimized resis-tance load of 3.00 MΩ from 3 gnacceleration at the first-order resonant frequency of 41 Hz.
出处 《传感技术学报》 CAS CSCD 北大核心 2015年第12期1770-1773,共4页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(51422510 51175483 61401406) 国家863计划项目(2015AA042601)
关键词 MEMS 压电 微加工 能量采集 输出功率 MEMS piezoelectric micromachining process energy harvesting output power
  • 相关文献

参考文献5

二级参考文献150

  • 1James M.Gilbert,Farooq Balouchi.Comparison of Energy Harvesting Systems for Wireless Sensor Networks[J].International Journal of Automation and computing,2008,5(4):334-347. 被引量:26
  • 2郑可炉,褚家如,鲁健,李恒.PZT铁电薄膜湿法刻蚀技术研究[J].压电与声光,2005,27(2):209-212. 被引量:9
  • 3[1]I.Stojmenovic.Handbook of Sensor Networks:Algorithms and Architectures,John Wiley & Sons Inc,Hoboken,New Jersey,USA,2005.
  • 4[2]R.Jain,J.Wullert II.Challenges:Environmental Design for Pervasive Computing Systems.In Proceedings of the 8th Annual International Conference on Mobile Computing and Networking,ACM,New York,USA,pp.263-270,2002.
  • 5[3]K.Romer,F.Mattern.The Design Space of Wireless Sensor Networks.IEEE Wireless Communications Magazine,vol.11,no.6,pp.54-61,2004.
  • 6[4]K.Martinez,R.Ong,J.K.Hart,J.Stefanov.GLACSWEB:A Sensor Web for Glaciers.In Proceedings of European Workshop on Wireless Sensor Networks,Berlin,Germany,pp.46-49,2004.
  • 7[5]I.W.Marshall,C.Roadknight,I.Wokoma,L.Sacks.Self-organizing Sensor Networks.In Proceedings of UbiNet,London,UK,[Online],Available:http://www-dse.doc.ic.ac.uk/Projects/UbiNet/ws2003/papers/marshall.pdf,2003.
  • 8[6]D.Roemmich,S.Riser,R.Davis,Y.Desanbies.Au-tonomons Profiling Floats:Workhorse for Broadseale Ocean Observations.Marine Technology Society Journal,vol.38,no.1,pp.31-39,2004.
  • 9[7]R.Beekwith,D.Teibel,P.Bowen.Unwired Wine:Sensor Networks in Vineyards.In Proceedings of IEEE Sensors,IEEE Press,vol.2,pp.561-564,2004.
  • 10[8]A.Malnwaring,D.Culler,J.Polastre,R.Szewczyk,J.An-derson.Wireless Sensor Networks for Habitat Monitoring.In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications,ACM,Atlanta,Georgia,USA,pp.88-97,2002.

共引文献54

同被引文献58

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部