期刊文献+

人脸识别的光照预处理算法 被引量:2

Illumination pretreatment algorithm of face recognition
下载PDF
导出
摘要 针对光照变化对人脸图像的改变,降低人脸识别系统的识别率的问题,提出改进的光照预处理的方法,将图像用小波变换取低频成分,再进行双直方图均衡化处理,提高图像的光照对比度;然后对同一张图像,用高斯高通滤波器取高频成分,对图像进行信号增强;再对两种处理后的图像进行一定比例融合,用空域锐化方法再进行图像特征增强。用主成分分析(principal component analysis,PCA)方法进行降维,线性鉴别分析(linear discriminant analysis,LDA)方法进行特征提取。实验结果表明,在小训练样本情况下,较经典PCA方法错误率可下降25%左右。 Change of illumination would alter face image recognition and decrease the recognition rate. An improved illumination pretreatment method is put forward by using wavelet for low frequency component of the image and double histogram equalization processing to improve the image illumination contrast. Then the high frequency components of the same image are gained with Gaussian high- pass filter,and the image signal is enhanced. Then two kinds of processed image are fused to a certain proportion,and the image features are enhanced with the airspace image sharpening method. The Principal Component Analysis is used for dimension reduction and Linear Discriminant Analysis is used for feature extraction. Experimental results show that in the case of small training samples,the error rate can decrease 25% compared with classical PCA method.
出处 《北京信息科技大学学报(自然科学版)》 2015年第6期77-82,共6页 Journal of Beijing Information Science and Technology University
基金 北京市属高等学校创新团队建设与教师职业发展计划基金项目(IDHT20130519)
关键词 人脸识别 光照预处理 频带处理 小样本 face recognition illumination pretreatment band processing small sample
  • 相关文献

参考文献11

二级参考文献132

  • 1卿来云,山世光,陈熙霖,高文.基于球面谐波基图像的任意光照下的人脸识别[J].计算机学报,2006,29(5):760-768. 被引量:27
  • 2费风长,方志军,曾卫明,章琳.基于区间映射规则的数字直方图处理[J].计算机工程,2006,32(19):217-220. 被引量:6
  • 3Zhao W Y,Chellappa R,Rosenfeld A,et al.Face recognition:A literature survey[J].ACM Computing Survey, 2003,35 (4) : 399-458.
  • 4Adini Y,Moses Y,Ullman S.Face recognition:The problem of compensating for changes in illumination direction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7):721-732.
  • 5Shan S, Gao W, Cao B, et al.Illumination normalization for robust face recognition against varying lighting conditions[C]//Proc IEEE Workshop on AMFG,2003: 157-164.
  • 6Savvides M,Kumar V.Illumination normalization using logarithm transforms for face authentication[C]//Proc IAPR AVBPA,2003: 549-556.
  • 7Xie X,Lam K M.Face recognition under varying illumination based on a 2D face shape model[J].Pattern Recognition,2005:221-230.
  • 8Belhumeur P N,Kriegman D J.What is the set of images of an object under all possible illumination conditions[J].Int J Comput Vis, 1998,28 (3) : 245-260.
  • 9Georghiades A S,Belhumeur P N,Jacobs D W.From few to many: Illumination cone models for face recognition under variable lighting and pose[J].IEEE Trans Pattern Anal Mach Intel,2001,23(6): 630-660.
  • 10Chen H F,Belhumeur P N,Kriegman D J.In search of illumination invariants[C]//Proc IEEE Conf Computer Vision and Pattern Recognition, 2000,1 : 13-15.

共引文献79

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部