摘要
由于无线信道固有的稀疏性,压缩感知理论已被应用于正交频分复用(OFDM)系统的信道估计中来提高频谱利用率。文中研究OFDM系统稀疏信道中确定性导频的设计问题,针对互相关最小准则的不足,提出了一种基于测量矩阵互相关和测量矩阵列相关平方和最小化的联合算法。仿真结果表明,该算法的归一化均方误差(MSE)和误码率(SER)性能均优于基于互相关最小准则的随机搜索导频,相比于最小二乘算法,稀疏信道估计使用了更少的导频获得了更好的估计效果,提高了频谱利用率。
Due to the inherent sparsity of the wireless channel, compressive sensing theory is applied in the channel estimation of the orthogonal frequency division multiplexing (OFDM) system to improve spectrum utilization. In this paper, the design of deterministicpilot in sparse channel estimation was presented, because of the inadequate of the minimum cross-con'elation criteria, it proposes a based on minimizing the cross-correlation and the summation of squared columns correlation of the measure matrix. The simulation results show that the normalized mean square error (MSE) and symbol error rate (SER) performance of this algorithm were both better than the random search algorithm based on minimum cross- correlation criteria, compared to least-squares algorithm, sparse channel estimation used less pilot but got a better performance, thus improved spectrum utilization.
出处
《信息技术》
2016年第1期75-78,共4页
Information Technology
基金
微系统技术国防科技重点实验室基金项目(9140C18-010214XXXX)