期刊文献+

二元关系半群P_Γ(Λ×Λ)的一类左单位的构造 被引量:2

Construction of a class of left unit of semigroup P_Γ( Λ × Λ)
下载PDF
导出
摘要 设Λ是任意的非空集合,Γ是集合Λ上的半格,f:Λ→Γ是任意集值变换.通过Λ上的极值变换f定义集合Λ上由半格Γ确定的二元关系,而P_Γ(Λ×Λ)是集合Λ上由半格Γ确定的所有二元关系构成的集合,并且P_Γ(Λ×Λ)在二元关系的乘积运算构成半群.利用半群P_Γ(Λ×Λ)左单位已有的结论,以及二元关系之间的包含关系,可以获得P_Γ(Λ×Λ)的一类左单位的重要特征,从而可以构造出半群P_Γ(Λ×Λ)的一类左单位. Let A be an arbitrary nonempty set, and F be a semilattice on the set A. Let f be an arbitrary transformation of the set A into the set Г. On the set A , by transformation f, a binary relation determined by the semilattice F is defined, and all of these binary relations constitute the set PГ(∧×∧). In the multiplication of binary relations, PГ(∧×∧) is a semigroup. In the semigreup PГ(∧×∧) , by using the existing conclusions of left units, and the inclusion relations between the binary relation, the important properties of left units are obtained. As a result, a class of left units is constructed.
作者 林屏峰
出处 《西南民族大学学报(自然科学版)》 CAS 2016年第1期96-98,共3页 Journal of Southwest Minzu University(Natural Science Edition)
基金 中央高校基本科研业务费专项项目(2015NZYQN38)
关键词 半格 二元关系 二元关系半群 左单位 构造 semilattice binary relation semigroup of binary relations left unit construction
  • 相关文献

参考文献15

  • 1ROBERT JAMES PLEMMONS. On the semigroup of binary relations[J]. Pacific Journal Mathematics, 1970,35:743 -753.
  • 2ROBERT JAMES PLEMMONS, BORIS M. Schein. Groups of binary re- lations [J], Semigreup Forum, 1970,1:267 - 271.
  • 3TEFAN SCHWARZ. On idempotent binary relations on a finite set [J]. Czechoslovak Mathematical Journal, 1970,20:696 - 702.
  • 4KAREN CHASE. New semigreups of binary relations [J]. Semigroup Forum, 1979,18:79 - 82.
  • 5KAREN CHASE. Sandwish semigroups of binary relations[J]. Discrete Math. , 1979,28:231 - 236.
  • 6KAREN CHASE. Maximal groups in sandwish semigroups of binary re- lations [J]. Pacific Journal Mathematics, 1982,100:43 - 59.
  • 7RALPH N, MCKENZIE M, BORIS M. Schein. Every semigreups is iso- morphic to a transitive semigroup of binary relations [J]. Transactions of the American Mathematical Society, 1997,349:271 - 285.
  • 8JANUSZ KONIECZNY. The semigroup generated by regular Boolean matrices [J]. Southeast Asian Bulletin of Mathematics, 2002,25:627 - 641.
  • 9林屏峰.集合I到集合Λ上的二元关系半群P_θ(I×Λ)的正则性[J].西南民族大学学报(自然科学版),2009,35(5):941-946. 被引量:6
  • 10林屏峰.集合I到集合Λ上的二元关系半群P_θ(I×Λ)的生成集和Green-关系[J].西南民族大学学报(自然科学版),2010,36(1):44-49. 被引量:6

二级参考文献49

  • 1PLEMMONS R J, WEST M T. On the semigroup of binary relations[J]. Pacific J Math, 1970, 35: 743-753.
  • 2PLEMMONS R J, SCHEIN B M. Groups of binary relations[J]. Semigroup Forum,1970, 1: 267-271.
  • 3SCHWARZ S. On idempotent binary relations on a finite set[J]. Czech J Math, 1970, 20: 696-702.
  • 4KONIECZNY J. The semigroup generated by regular Boolean matrices[J]. South Asian Bull of Math, 2002, 25: 627-641.
  • 5KONIECZNY J. Green's equivalences in finite semigroups &binary relations[J]. Semigroup Forum, 1994,48: 235-252.
  • 6CHASE K. New semigroups of binary relations[J]. Semigroup Forum, 1979, 18: 79-82.
  • 7CHASE K. Sandwish semigroups of binary relations[J]. Discrete Math, 1979, 28:231-236.
  • 8CHASE K. Maximal groups in sandwish semigroups of binary relations[J]. Pacific J Math, 1982, 100: 43-59.
  • 9KI HANG KIM. Boolean matrix theory and applications[M]. New York: Marcel Dekker, 1982.
  • 10LIN P F, XU B, ZHANG CH J. Some properties of Semigroup Pθ(I × A) of all Binary Relations from a Set I to a Set A [J]. Journal of Guizhou Normal University (Natural Sciences), 2007, 25(3): 72-77.

共引文献7

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部