期刊文献+

基于遗传算法优化神经网络的光伏电站短期功率预测 被引量:17

Short-term Power Prediction of PV Based on Combined BP-GA Neural Network
下载PDF
导出
摘要 针对现有光伏发电预测的不足,基于遗传算法(GA)和神经网络(BP)算法构建光伏电站功率预测模型,并使用组合权重法遴选相似日对模型进行修正。采用新疆某光伏电站运行实例验证模型的有效性,并对比BP-GA模型与单一BP模型的预测误差。结果表明,BP-GA模型克服了传统单一BP模型的不足,具有较高的预测精度,可为光伏发电预测工程实践提供参考。 Taking into account the insufficient of existed PV power generation forecasting,this paper established a new PV system power forecasting model based on genetic algorithm and neural network.And then the model was corrected by using selection of the similar days with combined weight.Furthermore,running instance of a certain photovoltaic power plant in Xinjiang was adopted to verify the effectiveness of the proposed model.Compared with the prediction errors of single BP model,the results show that the proposed prediction model overcame the defect of the traditional single model and had higher accuracy.Thus,it can provide decision support for PV power generation projects.
出处 《水电能源科学》 北大核心 2016年第1期211-214,共4页 Water Resources and Power
基金 新疆杰出青年自然科学基金项目(2014711005) 国家自然科学基金项目(51367018)
关键词 光伏发电 功率预测 遗传算法 神经网络 相似日遴选 PV power prediction genetic algorithm neural network selection of similar days
  • 相关文献

参考文献6

二级参考文献53

  • 1匡乐红,徐林荣,刘宝琛.组合赋权法确定地质灾害危险性评价指标权重[J].地下空间与工程学报,2006,2(6):1063-1067. 被引量:64
  • 2焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1993..
  • 3汪祖媛 章劲松 等.遗传算法的应用研究进展[J].中国科学技术大学学报,1999,(4).
  • 4D. E. Goldberg. Genetic Algorithms in Search,Optimization,and Machine Learning[M]. New York:Addison Wesley,1989. 1-145.
  • 5R. L. Haupt. An introduction to genetic algorithm for electromagnetic[J]. IEEE Antenna and Propagation Magazine,1995,37(2):7-15.
  • 6C. Cheng,S. L. He. Optical design for a copper laser system with a maximum power by using a genetic algorithm[J]. Optical and Quant. Electron.,2001,33(1):83-85.
  • 7C. Cheng,F. Zhuang. Plasma kinetics mechanisms of an optimized copper vapor laser[J]. J. Phys. D:Appl. Phys.,2000,33(10):339-341.
  • 8M. J. Withford,D. J. Brown,J. A. Piper. Optimization of He-Ne buffer gas mixtures for copper vapor lasers[J]. IEEE J. Quantum Electron.,1996,32(8):1310-1315.
  • 9丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科技大学出版社,2003..
  • 10钱敏平 龚光鲁.随机过程论[M].北京:北京大学出版社,2000..

共引文献222

同被引文献150

引证文献17

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部