摘要
针对现有光伏发电预测的不足,基于遗传算法(GA)和神经网络(BP)算法构建光伏电站功率预测模型,并使用组合权重法遴选相似日对模型进行修正。采用新疆某光伏电站运行实例验证模型的有效性,并对比BP-GA模型与单一BP模型的预测误差。结果表明,BP-GA模型克服了传统单一BP模型的不足,具有较高的预测精度,可为光伏发电预测工程实践提供参考。
Taking into account the insufficient of existed PV power generation forecasting,this paper established a new PV system power forecasting model based on genetic algorithm and neural network.And then the model was corrected by using selection of the similar days with combined weight.Furthermore,running instance of a certain photovoltaic power plant in Xinjiang was adopted to verify the effectiveness of the proposed model.Compared with the prediction errors of single BP model,the results show that the proposed prediction model overcame the defect of the traditional single model and had higher accuracy.Thus,it can provide decision support for PV power generation projects.
出处
《水电能源科学》
北大核心
2016年第1期211-214,共4页
Water Resources and Power
基金
新疆杰出青年自然科学基金项目(2014711005)
国家自然科学基金项目(51367018)
关键词
光伏发电
功率预测
遗传算法
神经网络
相似日遴选
PV
power prediction
genetic algorithm
neural network
selection of similar days