期刊文献+

面向高维数据PCA-ReliefF的EP模式分类算法 被引量:3

EP Pattern Classification Algorithm for High Dimensional Data Based on PCA-Relief F Computer Engineering and Applications
下载PDF
导出
摘要 针对高维数据集,文中提出一种PREP(PCA-Relief F for EP)算法:首先采用PCA和Relief F算法实现特征降维;然后利用EP模式思想,构造精度更高、规模更小的EP模式分类器;最后利用标准数据集对文中的方法进行测试。实验结果表明,在对高维数据进行分类时,该方法构造的分类器在预测精度和运行时间上均有较大幅度的提升。 For high dimensional data sets,PREP( PCA- Relief F for EP) algorithm is presented. Firstly,the feature dimension reduction is realized by using the PCA and Relief F algorithm. Then,higher precision and smaller EP classifier is constructed by using the EP model of ideological construction. Finally,the method of PREP is tested by using the standard data. The results show that structured classifier constructed by this method has a great improvement in the prediction accuracy and running time for the high dimensional data.
出处 《安庆师范学院学报(自然科学版)》 2015年第4期28-32,共5页 Journal of Anqing Teachers College(Natural Science Edition)
基金 安徽省高等学校自然科学基金(KJ2013A177)
关键词 分类器 特征选择 PCA-ReliefF EP模式 PREP算法 classification model feature selection PCA-Relief F EP model PREP algorithm
  • 相关文献

参考文献13

  • 1S. Gnanapriya, R. Suganya, G. S. Devi, et al.. Data mining: concepts and techniques [ J ]. Data Mining & Knowledge Engi- neering, 2010, 26(1) : 32 -38.
  • 2马红娟,赵秀兰,孙亚萍,郑喜英.基于数据挖掘技术的概率统计教学研究[J].经济研究导刊,2015(6):220-222. 被引量:7
  • 3Jinyan Li, Guozhu Dong, K. Ramamohanarao. Making use of the most expressive jumping emerging patterns for classification [ J ]. Knowledge and Information Systems, 2001, 3(2) : 1 -29.
  • 4Jinyan Li, Guozhu Dong, K. Ramamohanarao. DeEPs: a new in- stance - based lazy discovery and classification system [ J ]. Ma- chine Learning, 2004, 54(2): 99-124.
  • 5F. Berzal, J. C. Cubero, S. J. Maria. A hybrid classification model[ J]. Machine Learning, 2004, 54( 1 ): 67- 92.
  • 6S. Haykin. Neural networks : a comprehensive foundation [J]. Computation Systems, 1999, 4(2) : 188 - 190.
  • 7H. Fan, K. Ramamohanara. Fast discovery and the generaliza- tion of strong jumping emerging patterns for building compact and accurate classifiers [ J ]. IEEE Transaction on Knowledge and Data Engineering, 2006, 18(6) : 721 -737.
  • 8许洪涛.一种基于eEPS的中文文本自动分类算法[D].郑州:郑州大学,2006.
  • 9余映,王斌,张立明.一种面向数据学习的快速PCA算法[J].模式识别与人工智能,2009,22(4):567-573. 被引量:10
  • 10唐懿芳,钟达夫.主成分分析方法对数据进行预处理[J].广西师范大学学报(哲学社会科学版),2002,38(S1):223-225. 被引量:16

二级参考文献39

  • 1张丽新,王家廞,赵雁南,杨泽红.基于Relief的组合式特征选择[J].复旦学报(自然科学版),2004,43(5):893-898. 被引量:44
  • 2Haykin S. Neural Networks: A Comprehensive Foundation. 2nd Edition. Upper Saddle River, USA: Prentice Hall, 2001.
  • 3Golub G H, van Loan C F. Matrix Computation. 3rd Edition. Baltimore, USA: John Hopkins University Press, 1996.
  • 4Torralba A, Oliva A. Statistics of Natural Image Categories. Network: Computation in Neural Systems, 2003, 14(3) : 391 -412.
  • 5Oja E. A Simplified Neuron Model as a Principal Component Analyzer. Journal of Mathematical Biology, 1982, 15(3): 267-273.
  • 6Oja E, Karhunen J. On Stochastic Approximation of the Eigenvectots and Eigenvalues of the Expectation of a Random Matrix. Journal of Mathematical Analysis and Applications, 1985, 106 : 69 - 84.
  • 7Sanger T D. Optimal Unsupervised Learning in a Single-Layer Linear Feedforward Neural Network. IEEE Trans on Neural Networks, 1989, 2(6) : 459 -473.
  • 8Weng Juyang, Zhang Yilu, Hwang W S. Candid Covariance-Free Incremental Principal Component Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25 (8) : 1034 - 1040.
  • 9Mao K Z.Fast ortlaogonal forward selection algorithm for feature subset selection[J].IEEE Trans Neural Networks, 2002, 13 (5) : 1218-1224.
  • 10Wei Hua-liang, Billings S A.Feature subset selection and ranking for data dimensionality reduction[J].IEEE Trans Pattern Analysis and Machine Intelligence, 2007,29 ( 1 ) : 162-166.

共引文献111

同被引文献36

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部