期刊文献+

NRRB在水稻应答高盐和干旱胁迫中的功能解析 被引量:1

Functional Analysis of NRRB in Rice Response to Salt and Drought Stresses
下载PDF
导出
摘要 为研究NRRB在水稻抗逆反应中的作用,通过重叠延伸PCR扩增NRRB基因编码区,构建超量表达载体,并转化水稻愈伤组织获得超量表达转基因水稻植株。鉴定结果表明,该基因已被整合到水稻基因组中,并实现超量表达;同时构建了抑制表达载体,获得转基因株系,PCR检测结果证实NRRB基因在转基因水稻中受到明显抑制。对T1代转基因植株进行抗旱性、耐盐性分析,结果显示,超量表达NRRB基因增强了转基因水稻对干旱的抗性,抑制表达NRRB基因的转基因水稻对干旱的敏感性增强,表明NRRB正调控水稻对干旱的抗性;耐盐性分析表明,NRRB基因的抑制表达降低了植株对盐的敏感性。 To explore the role of NRRB protein in rice coding region by overlap extension PCR, constructed resistance to abiotic stress, we amplified gene over-expression vector, and transformed into rice callus then obtained transgenic lines. The identification results showed that NRRB gene had been integrated into the rice genome, and was overexpressed in positive transgenic plants. Meanwhile, interference expression vector was constructed and transgenic lines were obtained, PCR result confirmed that the expression of NRRB was notably downregulated. The research on drought resistance in the T1 generation of transgenic plants indicated that overexpressing NRRB improved resistance of the transgenic plants to drought, and suppressing its expression enhanced susceptibility of the transgenic plants to drought, indicating that NRRB positively regulates resistance of rice to drought. The results of salt tolerance showed that suppressing NRRB reduced the susceptibility of the transgenic plants to salt.
出处 《亚热带植物科学》 2015年第4期267-273,共7页 Subtropical Plant Science
基金 国家重点基础研究发展计划(973)前期研究专项(No.2011ZX08001-001)
关键词 NRRB 超量表达载体 RNAi表达载体 转基因水稻 NRRB over-expression vector RNAi-expression vector transgenic rice
  • 相关文献

参考文献17

  • 1Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past, present and future[J]. The Plant Journal, 2010,61: 1041—1052.
  • 2Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(1): 247—273.
  • 3Vickers C E, Gershenzon J, Lerdau M T, Loreto F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress[J]. Nature Chemical Biology, 2009,5: 283—291.
  • 4Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations[J]. Current Opinion in Biotechnology, 2005,16: 123—132.
  • 5Zhu J K. Plant salt tolerance[J]. Trends in Plant Science, 2001,6(2): 66—70.
  • 6Cattivelli L, Baldi P, Crosatti C, Fonzo N D, Faccioli P, Grossi M, Mastrangelo A M, Pecchioni N, Stanca A M. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae[J]. Plant Molecular Biology, 2002,48: 649—665.
  • 7Hong Z L, Zhang Z M, Desh P S. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology, 2000,122:1129—1136.
  • 8Caplan, Jeffrey, Padmanabhan, Meenu, Dinesh K, Savithramma P. Plant NB-LRR immune receptors: From recognition to transcriptional reprogramming[J]. Cell Host & Microbe, 2008,3(3): 126—135.
  • 9Ouyang S Q, Liu Y F, Liu P, Lei G, He S J, Ma B, Zhang W K, Zhang J S, Chen S Y. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants[J]. The Plant Journal, 2010,62(2): 316—329.
  • 10Horton R M, Cai Z L, Ho S N, Pease L R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain[J]. Biotechniques, 1990,8: 528—535.

二级参考文献66

共引文献223

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部