期刊文献+

一种基于子频带匹配选择的宽带压缩频谱感知方法

A wideband spectrum sensing approach based on sub-band matching selection
下载PDF
导出
摘要 基于压缩感知的宽带频谱感知技术能有效降低过高的采样率和频谱感知复杂度。为了增强频谱感知中频谱信号的重构性能,根据宽带频谱信号具有的块稀疏特性,利用宽带频谱子频带划分的边界信息,提出一种改进OMP(MOMP)子频带匹配选择的宽带频谱重构算法,该算法旨在减少传统的OMP算法在频谱重构中的迭代次数,增强频谱重构的稳定性。仿真结果表明,基于该算法的宽带频谱感知方法不仅提高了频谱重构的准确性,而且有效缩短了频谱重构时间,具有很好的宽带频谱感知性能。 Wideband spectrum sensing technology based on compressed sensing can effectively reduce the high sampling rate and the complexity of spectrum sensing. During the sensing process, in order to enhance the reconstruction performance of the spectrum signal, a modified OMP sub-band matching selection algorithm for wideband spectrum reconstruction based on the prior knowledge of boundary information and the block sparse characteristics of wideband frequency signal was proposed. This method can reduce the number of iterations in spectrum reconstruction with OMP algorithm and enhance stability of spectrum reconstruction. Simulation results show that the proposed method can not only improve the accuracy of spectrum reconstruction, but also effectively shorten spectrum sensing timeand achieve better widehand soectrum sensing oerformance.
出处 《电信科学》 北大核心 2016年第1期34-39,共6页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61571250) 宁波市自然科学基金资助项目(No.2015A610121)~~
关键词 宽带频谱感知 压缩感知 OMP算法 wideband spectrum sensing; compressed sensing; orthogonal matching pursuit algorithm
  • 相关文献

参考文献17

  • 1KOLODZY P.Spectrum policy task force:findings and recommendations[C]//Proceedings of International Symposium on Advanced Radio Technologies,March 4-7,2003,Boulder,Colo,USA.Washington DC:NTIA Special Publications,2003:168-239.
  • 2MITOLAIII J,MAGUIREJRG Q.Cognitive radio:making software radios more personal[J].IEEE Personal Communications,1999,6(4):13-18.
  • 3DONONOD L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 4CANDEE J,WAKINM B.An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
  • 5石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 6TIAN Z,GIANNAKISG B.Compressed sensing for wideband cognitive radios[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing,April15-20,2007,Honolulu,HI,USA.New Jersey:IEEE Press,2007:1357-1360.
  • 7ZENG F,LI C,TIAN Z.Distributed compressive spectrum sensing in cooperative multihop cognitive networks[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(1):37-48.
  • 8POLOY L,WANG Y,PANDHARIPANDE A,et al.Compressive wide-band spectrum sensing[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing,April 19-24,2009,Taipei,Taiwan,China.New Jersey:IEEE Press,2009:2337-2340.
  • 9闫盛楠.基于两步式融合重构的压缩频谱检测方法[J].电信科学,2015,31(3):83-88. 被引量:1
  • 10CHENS S,D0N0H0D L,SAUNDERSM A.Atomic decomposition by basis pursuit[J].SLAM Journal on Scientific Computing,1998,20(1):33-61.

二级参考文献111

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献713

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部