期刊文献+

动力电池管理SoC采集前端及其ΣΔADC设计 被引量:2

Design of Acquisition Front-end and Σ-ΔADC in Battery Management SoC
下载PDF
导出
摘要 为保证新能源汽车动力电池高效安全,其电池管理系统BMS核心芯片的采集前端需要实现高精度电压检测.因此,沿着从系统到芯片的设计思路,首先对采集前端进行系统级设计验证,提出新型采集前端结构,实现多通道电压高精度同步检测,电池单体电压检测误差小于5mV,精度为0.15%.然后在芯片级设计了高精度采集前端的关键模块Σ-ΔADC调制器,完成行为级仿真,电路和版图设计仿真,后仿真结果显示,调制器有效位数达到16.58位,信噪比达101.6dB,达到了电池管理芯片采集前端高精度ADC设计需求.系统级高精度采集前端电路的实现验证和核心ADC调制器的设计为电池管理芯片高精度采集前端的实现做了研究准备. To guarantee the safety and efficiency of new energy automobiles, the acquisition front-end circuit of battery management IC requires high precision voltage detection. Therefore, using IC design methodology of System to Chip, system-level design and verification are carried out first. Based on new acquisition front-end structure, high-precision multi-channel voltage synchronous detection is achieved, cell voltage detection error is less than 5mV, and accuracy is about 0. 15%. Then, ∑-△ADC modulator is designed, which is the key module of chip-level high- precision acquisition front-end circuit of BMS SoC. After behavioral simulations, circuit and layout design and simulation, the ∑-△ modulator ENOB reaches 16. 58, and SNDR reaches 101.6 dB, which achieves design requirements. The system-level verification of high-precision acquisition front-end circuit and the design of its ∑-△ADC modulator make preparations for the implementation of high-precision acquisition front-end in BMS SoC.
出处 《微电子学与计算机》 CSCD 北大核心 2016年第2期44-48,53,共6页 Microelectronics & Computer
关键词 MS 采集前端 高精度 ∑-△调制器 BMS acquisition front-end high precisio ∑-△ modulator
  • 引文网络
  • 相关文献

参考文献5

  • 1张剑波,卢兰光,李哲.车用动力电池系统的关键技术与学科前沿[J].汽车安全与节能学报,2012,3(2):87-104. 被引量:91
  • 2Lu L, Han X, Li J, et al. A review on the key issues for lithium-ion battery management in electric vehicles [J]. Journal of power sources, 2013,226 (6) : 272-288.
  • 3Cheng K W E, Divakar B P, Wu H, et al. Battery- management system (BMS) and SOC development for electrical vehicles [J]. Vehicular Technology, IEEE Transactions on, 2011, 60(1):76-88.
  • 4杜祺漳,梁柱扬.基于“飞电容”技术的动力锂离子电池组保护系统的设计[J].电子工程师,2007,33(8):54-56. 被引量:11
  • 5Malcovati P, Brigati S, Francesconi F, et al. Behav- ioral modeling of switched-capacitor sigma-delta modu-lators [J]. Circuits and Systems Ⅰ: Fundamental Theo- ry and Applications, IEEE Transactions on, 2003, 50 (3) : 352-364.

二级参考文献18

  • 1Johansson B. Is gasoline the best fuel for advanced diesel engines?-[A].The Queen Hotel,Chester,U.K,.
  • 2Ciatti S,Subramanian S. An experimental investigation of low octane gasoline in diesel engines[J].Journal of Engineering for Gas Turbines and Power,Transactions of the ASME,2010,(09):1-11,No.092802.
  • 3Manente V,Johansson B,Tunestal P. Characterization of partially premixed combustion with ethanol:EGR sweeps,low and maximum loads[A].2009.
  • 4Luszcz P,Xu H,Wyszynski,M,Tsolakis,A,Ma X. Imaging Studies of In-cylinder HCCI Combustion[J].Frontiers in Energy,2011.313-321.
  • 5Frackowiak M,Xu H M,Wyszynski M L. The effect of exhaust throttling on HCCI-alternative way to control EGR and in-cylinder flow[J].SAEInt'lJFuels and Lubricants,2008,(01):1277-1289.
  • 6Misztal J,Xu H M,Wyszynski M L. Effect of injection timing on gasoline HCCI particulate emissions[J].Int'l J Engine Res,2009,(06):419-430.
  • 7Turner D,Tian G,Xu H M. An Experimental Study of Dieseline Combustion in a Direct Injection Engine[A].2009.
  • 8Misztal J,Xu H M,Wyszynski M L. Influence of inlet air temperature on gasoline HCCI particulate emissions[J].Combustion Science and Technology,2009,(05):695-709.
  • 9Misztal J,Xu H M,Wyszynski M L. Cylinder to cylinder variations in a V6 gasoline direct injection HCCI engine[J].JEng for Gas Turbines and Power ASME,2009,(04):1-12.
  • 10Xu H M,Rudolph S,Liu Z. An investigation into the operating mode transition in a HCCI engine using EGR trapping[J].J Engines SAE Trans,2004.1287-1297.

共引文献100

同被引文献14

引证文献2

二级引证文献6

;
使用帮助 返回顶部