期刊文献+

邻域结构为复杂网络的差分演化算法 被引量:4

New differential evolution algorithm with neighborhood structure based on complex network
下载PDF
导出
摘要 为了提升差分演化算法对局部最优的逃逸能力和避免早熟收敛,设计了一种邻域结构为复杂网络的差分演化算法(CNS-DE)。该算法将复杂网络上每一个节点定义为一个计算个体,节点间的连接关系决定了个体间的交互结构。CNS-DE的差分策略主要基于节点(个体)的邻居关系定义,该策略有利于保持群体的多样性,充分利用了群体分布特性。在函数寻优的经典数据集上,将CNS-DE与传统差分算法进行了对比。结果表明,该算法能有效避免陷入局部最优,有效改善了早熟现象,对解的质量有较大幅度提高。 In order to improve the capability of escaping local optimum for the differential evolution algorithm, and avoid pre- mature convergence, this paper designed a new algorithm named CNS-DE. The algorithm adopted a complex network as its spatial structure. Specifically, CNS-DE put an individual on one node of the network; the individual evolved by mainly inter- acting with its neighbors on the network. Based on nodes' ( individuals' ) neighbor relationship, this paper proposed a new differential strategy for CNS-DE. The policy fully used the distribution of group and is conductive to maintaining population di- versity. On the classic dataset for the tasks of function optimization, a series of experimental results of CNS-DE and DE show that the new algorithm can effectively avoid getting into local optimum, and effectively improve the precocious phenomenon. In addition, it greatly increases the quality of solutions.
出处 《计算机应用研究》 CSCD 北大核心 2016年第2期370-374,共5页 Application Research of Computers
基金 国家自然科学资金资助项目(71271067)
关键词 复杂网络 演化计算 差分算法 函数优化 空间结构 complex network evolution computation differential algorithm function optimization spatial structure
  • 相关文献

参考文献11

  • 1Storn R,Price K.Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces,Technical Report TR-95-012[R].Berkeley:University of California,International Computer Science Institute,1995.
  • 2Das S,Suganthan P N.Differential evolution:a survey of the state-of-the-art[J].IEEE Trans on Evolutionary Computation,2011,15(1):4-31.
  • 3贾丽媛,张弛.自适应差分演化进化算法[J].中南大学学报(自然科学版),2013,44(9):3759-3765. 被引量:9
  • 4Gong Wenyin,Cai Zh,Wang Yang.Repairing the crossover rate in adaptive differential evolution[J].Applied Soft Computing,2014,15:149-168.
  • 5贺毅朝,王熙照,刘坤起,王彦祺.差分演化的收敛性分析与算法改进[J].软件学报,2010,21(5):875-885. 被引量:68
  • 6孟颖,罗可,刘建华,石爽.一种基于差分演化的K-medoids聚类算法[J].计算机应用研究,2012,29(5):1651-1653. 被引量:11
  • 7阎春宁,史定华.幂律思考系列文章2——无标度网络的不同定义和包含关系[J].复杂系统与复杂性科学,2014,11(2):1-4. 被引量:4
  • 8Barabasi A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286(5439):509-512.
  • 9Payne J L,Giacobini M,Moore J H.Complex and dynamic population structures:synthesis,open questions,and future directions[J].Soft Computing,2013,17(7):1109-1120.
  • 10Dorogovtsev S N,Mendes J F ,Samukhin A N.Structure of growing networks with preferential linking[J].Physical Review Letters,2000,85(21):4633-4646.

二级参考文献44

  • 1张利彪,周春光,马铭,孙彩堂.基于极大极小距离密度的多目标微分进化算法[J].计算机研究与发展,2007,44(1):177-184. 被引量:29
  • 2赵光权,彭喜元,孙宁.基于混合优化策略的微分进化改进算法[J].电子学报,2006,34(B12):2402-2405. 被引量:20
  • 3张丰田,宋家骅,李鉴,程晓磊.基于混合差异进化优化算法的电力系统无功优化[J].电网技术,2007,31(9):33-37. 被引量:25
  • 4SCHOLKOPF B,MIKA S,BURGESC J C,et al.Input space versusfeature space in kernel-based methods[J].IEEE Tran on NeuralNetworks,1999,10(5):1000-1017.
  • 5GUO Hai-xiang,ZHU Ke-jun,GAO Si-wei,et al.An improved geneticK-means algorithm for optimal clustering[C]//Proc of the 6th IEEEInternational Conference on Data Mining Workshops.Washington DC:IEEE Computer Society,2006:793-797.
  • 6STORN R,PRICE K.Minimizng the real functions of the ICEC'96contest by differential evolution[C]//Proc of IEEE International Con-ference on Evolutionary Computation.Nagoya:IEEE,1996:842-844.
  • 7STORN R,PRICE K.Differential evolution:a simple and efficientadaptive scheme for global optimization over continuous spaces[R].Berkeley:University of California,2006:643-689.
  • 8PEI Zhen-kui,YU Hui,ZHAO Yan-Li.Image restoration based ondifferent evolution algorithm[J].Journal of PLA University of Sci-ence and Technology:Natural Science Edition,2010,11(5):489-492.
  • 9LIU jun-hong,LAMPINEN J.A fuzzy adaptive differential evolutionalgorithm[J].Soft Computing,2005,9(6):448-462.
  • 10贺毅朝,王熙照,寇应展.一种具有混合编码的二进制差分演化算法[J].计算机研究与发展,2007,44(9):1476-1484. 被引量:50

共引文献85

同被引文献16

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部