期刊文献+

基于后缀自动机的轨迹模式挖掘方法 被引量:1

Mining method for trajectory pattern based on suffix automaton
下载PDF
导出
摘要 基于交通路网研究移动对象轨迹预测,将序列分析方法和马尔可夫统计模型结合,提出了一种基于后缀自动机的变阶马尔可夫模型挖掘方法。该方法根据移动对象的历史轨迹数据进行学习训练,计算轨迹序列上下文的概率特征,建立序列的后缀自动机模型,结合当前实际轨迹数据,动态自适应预测将来的位置信息。实验结果表明:相比固定阶马尔可夫模型,随着阶数的增加(L≥2),固定阶马尔可夫模型预测的精度逐步降低,而该方法能动态自适应,精度保持在81.3%左右,取得较好的预测效果;同时,该方法只需线性的时间和空间开销,大大降低了存储空间和时间,能实现大规模数据的在线学习。 This paper researched the prediction for moving object' s trajectory based on the traffic network, and propOsed a variable order Markov model mining method based on suffix automaton by combining the sequence analysis method and Markov model. It trained the model and calculated the probabilistic characteristics of sequence context from the historical trajectory da- ta of moving objects, and constructed the suffix automaton model based path sequence, predicted the future trajectory position information dynamically and adaptively according to actual trajectory data. Experimental results show that this method can dy- namically adapt with the increase of order (L ≥ 2 ) and its accuracy remains at about 81.3 % while the prediction accuracy de- creases gradually using fixed order markov model. It acquires good prediction effect. Meanwhile, it needs only linear time and space cost , greatly reduces the storage space and time, and can realize large-scale data learning online.
出处 《计算机应用研究》 CSCD 北大核心 2016年第2期409-412,416,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61304199) 福建省科技重大专项专题项目(2011HZ0002-1) 福建省交通科技计划资助项目(201318) 福建省自然科学基金资助项目(2013J01214) 福建省教育厅A类项目(JA14087)
关键词 定阶马尔可夫模型 变阶马尔可夫模型 后缀字典树 后缀自动机 轨迹模式 轨迹预测 fix order Markov model variable order Markov model suffix trie suffix automaton trajectory model trajectory prediction
  • 相关文献

参考文献11

  • 1Hu Weiming,Li Xi,Tian Guodong,et al.An incremental dpmm-based method for trajectory clustering,modeling and retrieval[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2013,35(5):1051-1065.
  • 2Chawla S,Gionis A,Chawla S,et al.K-means:a unified approach to clustering and outlier detection[C]//SIAM International Conference on Data Mining.2013.
  • 3Masciari E,Shi Gao,Zaniolo C.Sequential pattern mining from trajectory data[C]//Proc of the 17th International Database Engineering & Applications Symposium.[S.l.] :ACM Press,2013:162-167.
  • 4Zolotukhin M,Ivannikova E,Hamalainen T.Novel method for the prediction of mobile location based on temporal-spatial behavioral patterns[C]//International Conference on Information Science and Technology.[S.l.] :IEEE Press,2013:761-766.
  • 5Wang Jingwei,Yen N Y,Guo Bin,et al.User travelling pattern prediction via indistinct cellular data mining[C]//Proc of the 10th IEEE International Conference on Autonomic and Trusted Computing,Ubiquitous Intelligence and Computing.[S.l.] :IEEE Press,2013:17-24.
  • 6Yu Xinran,Korkmaz T.Super-sequence frequent pattern mining on sequential dataset[C]//IEEE International Conference on Big Data.[S.l.] :IEEE Press,2013:52-59.
  • 7Mathew W,Raposo R,Martins B.Predicting future locations with hidden Markov models[C]//Proc of ACM Conference on Ubiquitous Computing.[S.l.] :ACM Press,2012:911-918.
  • 8Asahara A,Maruyama K,Sato A,et al.Pedestrian-movement prediction based on mixed Markov-chain model[C]//Proc of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.[S.l.] :ACM Press,2011:25-33.
  • 9Gambs S,Killijian M O,Del Prado Cortez M N.Next place prediction using mobility Markov chains[C]//Proc of the 1st Workshop on Measurement,Privacy,and Mobility.[S.l.] :ACM Press,2012:3.
  • 10吕明琪,陈岭,陈根才.基于自适应多阶Markov模型的位置预测[J].计算机研究与发展,2010,47(10):1764-1770. 被引量:10

二级参考文献2

共引文献9

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部