期刊文献+

基于GAIG特征选择算法的轻量化DDoS攻击检测方法 被引量:2

Lightweight detection approach of DDoS attacks based on GAIG algorithm for feature selection
下载PDF
导出
摘要 为了提高基于分类的DDo S攻击检测方法的实时性,通过结合轻量级入侵检测提出了以遗传算法为搜索策略、信息增益为子集评估标准的filter型特征选择算法(feature selection based on genetic algorithm and information gain,GAIG),提取具有高区分度的相对最小特征子集。在此基础上对比了Nave Bayes、C4.5、SVM、RBF network、Random forest和Random tree这六种常用分类器的性能,并选取Random tree构建了一种轻量化的DDo S攻击检测系统。实验结果表明,GAIG算法使分类器在尽可能不降低分类精度的同时,提高分类速度,从而提高分类检测的实时性。该轻量化攻击检测系统比一般的分类模型具有更好的检测未知攻击的能力。 To improve the real-time performance of classification-based methods for distributed denial of service (DDoS) at- tacks detection, this paper introduced a lightweight intrusion detection. Firstly, it proposed a filter algorithm for feature selec- tion:GAIG,by combining genetic algorithm as the search strategy and information gain as the evaluation function. Extracting the minimum feature subset with a high classification performance by GAIG,it reduced the noisy and redundant features. Based on the features selected by GAIG, it compared the performances of classifiers with Naive Bayes, C4.5, SVM, RBF network, Random forest and Random tree, and built a lightweight detection system with Random tree. The experimental results show, GAIG increases the real-time performance of classifiers obviously,while the accuracy is still satisfying. With the strong detec- tion ability of unknown attacks, the approach has a better survivability than the general classification models.
出处 《计算机应用研究》 CSCD 北大核心 2016年第2期502-506,共5页 Application Research of Computers
基金 国家科技支撑计划资助项目(2014BAH30B01)
关键词 分布式拒绝服务攻击 轻量级入侵检测 特征选择 分类器 distributed denial of service(DDoS) attacks lightweight intrusion detection feature selection classifier
  • 相关文献

参考文献24

  • 1Bhuyan M H,Bhattacharyya D K,Kalita J K.Network anomaly detection:methods,systems and tools[J].IEEE Communications Surveys & Tutorials,2014,16(1):303-336.
  • 2Feinstein L,Schnackerberg D,Balupari R,et al.Statistical approaches to DDoS attack detection and response[C]//Proc of DARPA Information Survivability Conference and Exposition.[S.l.] :IEEE Press,2003:303-314.
  • 3吕佳,汤光明.一种基于小波求解的DDoS攻击检测模型[J].计算机应用研究,2011,28(4):1450-1452. 被引量:3
  • 4Lee S M,Kim D S,Lee J H,et al.Detection of DDoS attacks using optimized traffic matrix[J].Computers & Mathematics with Applications,2012,63(2):501-510.
  • 5Abbes T,Bouhoula A,Rusinowitch M.Efficient decision tree for protocol analysis in intrusion detection[J].International Journal of Security and Networks,2010,5(4):220-235.
  • 6朱应武,杨家海,张金祥.基于流量信息结构的异常检测[J].软件学报,2010,21(10):2573-2583. 被引量:36
  • 7Muda Z,Yassin W,Sulaiman M N,et al.A K-means and Nave Bayes learning approach for better intrusion detection[J].Information Technology Journal,2011,10(3):648-655.
  • 8Ganapathy S,Kulothungan K,Muthurajkumar S,et al.Intelligent feature selection and classification techniques for intrusion detection in networks:a survey[J].EURASIP Journal on Wireless Communications and Networking,2013(1):1-16.
  • 9陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 10戴大蒙,慕德俊.非完备信息系统的启发式特征选择遗传算法[J].电子学报,2013,41(3):451-455. 被引量:6

二级参考文献51

共引文献152

同被引文献17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部