期刊文献+

提高直流微电网动态特性的改进下垂控制策略研究 被引量:86

Research on the Improved Droop Control Strategy for Improving the Dynamic Characteristics of DC Microgrid
下载PDF
导出
摘要 从理论上分析了功率扰动对输出电压的影响因素,提出一种阻性虚拟阻抗加补偿虚拟阻抗的改进下垂控制策略,阻性虚拟阻抗实现直流微电网稳态时的功率分配,补偿虚拟阻抗提升其动态性能;通过对一个简单的直流微电网进行小信号建模,给出了补偿虚拟阻抗的参数设计过程。仿真和实验结果表明,补偿虚拟阻抗下垂控制策略能够提升母线电压的动态特性,阻尼特性增强。 In this paper, the influence of the power turbulence on the output voltage is theoretically analyzed. An improved droop control strategy based on the resistive virtual impedance and compensative virtual impedance is presented. The resistive virtual impedance achieves the power sharing and the compensative virtual impedance improves the dynamic characteristics of the DC microgrid. A small signal model of a simple DC microgrid is used to analyze the design process of the compensative virtual impedance parameters. Simulation and experimental results demonstrate that the proposed compensative virtual impedance can improve the dynamic characteristics of the DC microgrid and enhance the damping property.
出处 《电工技术学报》 EI CSCD 北大核心 2016年第3期31-39,共9页 Transactions of China Electrotechnical Society
基金 国家自然科学基金(51277150 51307140) 陕西省工业攻关项目(2013K07-05) 陕西省教育厅专项科研基金(13JK0994) 陕西省重点学科建设专项资金(105-7075X1301)资助
关键词 下垂控制 虚拟阻抗 动态特性 直流微电网 Droop control, virtual impedance, dynamic characteristics, DC microgrid
  • 相关文献

参考文献25

  • 1Li Y W,Kao C N.An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low voltage multibus microgrid[J].IEEE Transactions on Power Electronics,2009,24(12):2977-2988.
  • 2Maouedj R,Mammeri A,Draou M D,et al.Grid converters for photovoltaic and wind power systems[J].Energy Procedia,2011,28(11):797-807.
  • 3Kakigano H,Nomura M,Ise T.Loss evaluation of DC distribution for residential houses compared with AC system[C]//2010 International Power Electronics Conference,Sapporo,2010:480-486.
  • 4Boroyevich D,Cvetkovic I,Dong Dong,et al.Future electronic power distribution systems a contemplative view[C]//2010 12th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM),Basov,2010:1369-1380.
  • 5吴卫民,何远彬,耿攀,钱照明,汪槱生.直流微网研究中的关键技术[J].电工技术学报,2012,27(1):98-106. 被引量:297
  • 6Cao X,Chen J,Xiao Y,et al.Building-environment control with wireless sensor and actuator networks:centralized versus distributed[J].IEEE Transactions on Industrial Electronics,2010,57(11):3596-3605.
  • 7Wang B,Sechilariu M,Locment F.Intelligent DC microgrid with smart grid communications:control strategy consideration and design[J].IEEE Transactions on Smart Grid,2012,3(4):2148-2156.
  • 8Jin C,Wang P,Xiao J,et al.Implementation of hierarchical control in DC microgrids[J].IEEE Transactions on Industrial Electronics,2014,61(8):4032-4042.
  • 9Bryan J,Duke R,Round S.Decentralized generator scheduling in a nanogrid using DC bus signaling[C]//IEEE Power Engineering Society General Meeting,2004,1:977-982.
  • 10陆晓楠,孙凯,Josep Guerrero,黄立培.适用于交直流混合微电网的直流分层控制系统[J].电工技术学报,2013,28(4):35-42. 被引量:72

二级参考文献58

  • 1王飞,余世杰,苏建徽,沈玉梁.太阳能光伏并网发电系统的研究[J].电工技术学报,2005,20(5):72-74. 被引量:184
  • 2Kakigano H, Miura Y, Ise T, et al. Fundamental characteristics of DC micro-grid for residential houses with cogeneration system in each house[C]. 2008 IEEE Power and Energy Society General Meeting--Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 2008: 1-8.
  • 3Marnay C, Robio F J, Siddiqui A S. Shape of the micro-grid[C]. IEEE Power Engineering Society Winter Meeting, Columbus, OH, USA, 2001, 1: 150-153.
  • 4Barnes M, Ventakaramanan G, Kondoh J, et al. Real- world micro-grids-an overview[C]. IEEE International Conference on System of Systems Engineering, San Antonio, TX, USA, 2007: 1-8.
  • 5Fred C Lee. Sustainable Buildings and Nanogrids[EB/ OL]. http://www.cpes.vt.edu/publications/proceedings/ conference/2010/index.php, 2010.
  • 6Mark Mc Granaghan, Thomas Ortmeyer,. David Crudele, et al. Renewable systems interconnection study: advanced grid planning and operations[R]. Sandia National Laboratories, 2008.
  • 7My Ton, Brian Fortenbery Data Center Efficiency DC Power for Improved [R/OL]. http://hightech. lbl.gov/dc-powering/, 2008.
  • 8Ciezki J G, Ashton R W. Selection and stability issues associated with a navy shipboard DC zonal electric distribution system[J]. IEEE Transactions on Power Delivery, 2000, 15(2): 665-669.
  • 9Chun Lien Su, Chun Teng Yeh. Probabilistic security analysis of shipboard DC zonal electrical distribution systems[C]. IEEE Power and Energy Society General Meeting, 2008:1-7.
  • 10Emadi K, Ehsani M. Aircraft power systems: technology, state of the art, and future trends[J]. IEEE Aerospace and Electronic Systems Magazine, 2000, 15(1): 28-32.

共引文献358

同被引文献687

引证文献86

二级引证文献838

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部