期刊文献+

结合深度置信网络和模糊集的虚假交易识别研究 被引量:5

Combine Deep Belief Networks and Fuzzy Set for Recognition of Fraud Transaction
原文传递
导出
摘要 【目的】解决电子商务平台中存在的虚假交易问题。【方法】依据消费者历史购买和评论行为数据,提出一种结合深度置信网络和模糊集的虚假交易识别方法,通过识别虚假交易的用户(刷客)进行虚假交易的识别。【结果】识别准确率达到89%,与浅层机器学习模型试验结果进行对比,其综合性能有明显提升。【局限】相对于淘宝存在的海量刷客,实验数据较少。仅以淘宝数据作为验证数据,未涉及其他电子商务平台。【结论】本方法能够较好地识别刷客,减少电子商务中的虚假交易问题。 [Objective] To solve the problem of fraud transaction in e-commerce platform. [Methods] This paper proposes a method that combine Deep Belief Networks and fuzzy set based on consumers' purchase history and reviews Through recognizing the users in fraud transactions--cheaters to recognize the fraud transactions. [Results] Tested by experiments using the data crawled from Taobao.com, the accuracy can be achieved 89%. Compared with the shallow machine learning model, the comprehensive performance improves significantly. [Limitations] In contrast with the huge normal users and the users in fraud transactions, the experimental data in the paper is relatively small. And the test data only from Taobao.com, lack of the data from the other e-commerce platform to be validated. [Conclusions] The users in fraud transactions can be identified by the method, and the fraud transaction in e-commerce can be reduced.
作者 张李义 刘畅
出处 《现代图书情报技术》 CSSCI 2016年第1期32-39,共8页 New Technology of Library and Information Service
关键词 虚假交易 刷客识别 商品评论 深度学习 模糊集 Fraud transaction Cheater recognition Product reviews Deep learning Fuzzy set
  • 相关文献

参考文献26

  • 1中国电子商务研究中心.2014年度中国电子商务市场数据监测报告[R/OL].[2015-04—08]http://www.100ec.cn/zt/upload—data/20150408.pdf.
  • 2“2014年最成功电子商务网站”提名:淘宝网[EB/OL].[2014-12-05].http://miit,~cidnet.corn/art/32559/20141205/5693755_1.html.
  • 3Jindal N, Liu B. Opinion Spare and Analysis [C]. In: Proceedings of the 2008 International Conference on Web Search and Web Data Mining (WSDM). 2008.
  • 4Jindal N, Liu B, Lim E P. Finding Unusual Review Patterns Using Unexpected Rules [C]. In: Proceedings of the 19thACM International Conference on Information and Knowledge Management (CIKM). 2010:1549-1552.
  • 5Ott M, Choi Y, Cardie C, et al. Finding Deceptive Opinion Spam by Any Stretch of the Imagination [C]. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011: 309-319.
  • 6任亚峰,尹兰,姬东鸿.基于语言结构和情感极性的虚假评论识别[J].计算机科学与探索,2014,8(3):313-320. 被引量:27
  • 7Feng S, Banerjee R, Choi Y. Syntactic Stylometry for Deception Detection [C]. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers. 2012: 171-175.
  • 8Fei G, Mukherjee A, Liu B, et al. Exploiting Burstiness in Reviews for Review Spammer Detection [C]. In: Proceedings of the 7th International AAAI Conference on Weblogs and Social Media. 2013, 13: 175-184.
  • 9Lim E P, Nguyen V A, Jindal N, et al. Detecting Product Review Spammers Using Rating Behaviors [C]. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. ACM, 2010: 939-948.
  • 10Jiang B, Cao R H, Chert B. Detecting Product Review Spamrners Using Activity Model [C]. In: Proceedings of the 2013 International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013). Atlantis Press, 2013:650-653.

二级参考文献49

  • 1[2]R JACOBS. Increased Rates of Convergence Through Leaning Rate Adaptation[J]. Neural Networks, 1988, 1: 295-307.
  • 2[3]Y LECUN, Y BENQUO. Handbook of Brain Theory and Neural Networks[M]. MIT Press, 1995, 255-258.
  • 3[4]R LIPPMANN. An Introduction to Computing with Neual Nets[J]. IEEE ASSP Magazine, 1987, 4: 22.
  • 4[5]E S ACKINGER, B BOSER, Y LECUN, L JACLEL. Application of the ANNA Neural Network Chip to High-Speed Character Recognition[ J ]. IEEE Transactions on Neural Networks, 1992, 3: 498-505.
  • 5[6]D H WOLPERT. Stacked generalization[J]. Neural Net-works, 1992, 5:241-259.
  • 6[1]E BAUM, D HAUSSLER. What Size Net Gives Valid Generalization[J]. Neural Computation, 1989, 1:151-160.
  • 7BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 8BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 9HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 10BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.

共引文献1186

同被引文献35

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部