期刊文献+

中文领域专业术语层次关系构建研究 被引量:1

Study on Construction of Domain Terminology Taxonomic Relation
原文传递
导出
摘要 【目的】对如何从中文非结构化文本获取术语的层次关系进行探讨。【方法】从CNKI获取数字图书馆学科领域文献,通过术语抽取、术语向量空间模型构建、BIRCH算法聚类和聚类标签确定构建术语的语义层次结构。【结果】构建数字图书馆领域术语的层次结构,并对构建结果进行验证,聚类正确率达到80.88%,类标签抽取正确率达到89.71%。【局限】对构建效果的验证是通过随机抽样进行的,且仅与一种其他构建方法进行实证比较。【结论】应用BIRCH算法聚类构建术语层次结构,该方法与K-means聚类方法相比具有明显优势,具备较高的执行效率和聚类有效性。 [Objective] Discuss how to obtain the terminology taxonomic relation from Chinese domain unstructured text. [Methods] Based on Digital Library domain text from CNKI, construct terminology hierarchy by terminology extraction, terminology Vector Space Model construction, BIRCH clustering and cluster tag distribution. [Results] Obtain the terminology taxonomic relation of Digital Library domain, and evaluate the effectiveness. The accuracy of clustering reaches up to 80.88%, and the accuracy of cluster tag extraction reaches up to 89.71%. [Limitations] Evaluate the effectiveness by random sampling, and in comparison with one method only. [Conclusions] Making use of BIRCH algorithm to construct terminology taxonomic relation, this algorithm has obvious advantage compared with K-means clustering method, and has higher execution and clustering effectiveness.
出处 《现代图书情报技术》 CSSCI 2016年第1期73-80,共8页 New Technology of Library and Information Service
基金 江苏省自然科学基金项目"面向专利预警的中文本体学习研究"(项目编号:BK20130587) 中央高校基本科研业务费专项资金项目"我国图书情报学科知识结构及演化动态研究"(项目编号:20620140645)的研究成果之一
关键词 术语 层次关系 本体 本体学习 聚类 Terminology Taxonomic relation Ontology Ontology learning Clustering
  • 相关文献

参考文献20

  • 1Gruber T R. A Translation Approach to Portable Ontology Specifications [J]. Knowledge Acquisition, 1993, 5(2): 199-220.
  • 2Rios-Alvarado A B, Lopez-Arevalo I, Sosa-Sosa V J. Learning Concept Hierarchies from Textual Resources for Ontologies Construction [J]. Expert Systems with Applications, 2013, 40(15): 5907-5915.
  • 3温春,石昭祥,张霄.本体概念层次获取方法综述[J].计算机应用与软件,2010,27(9):103-107. 被引量:6
  • 4Harries Z S, Mathematical Structures of Language [M]. New York: Wiley, 1968.
  • 5Miller G A, Charles W. Contextual Correlates of Semantic Similarity [J]. Language and Cognitive Processes, 1991, 6(1): 1-28.
  • 6Sun C, Zhao M, Long Y J. Learning Concepts and Taxonomic Relations by Metric Learning for Regression [J]. Communications in Statistics-Theory and Methods, 2014, 43(14): 2938-2950.
  • 7Hu F H, Shao Z Q, Ruan T. Self-Supervised Chinese Ontology Learning from Online Encyclopedias [J]. The Scientific World Journal, 2014: Article ID 848631.
  • 8Colace F, De Santo M, Greco L, et al. Terminological Ontology Learning and Population Using Latent Dirichlet Allocation [J]. Journal of Visual Languages and Computing, 2014, 25(6): 818-826.
  • 9Meijer K, Frasincar F, Hogenboom F. A Semantic Approach for Extracting Domain Taxonomies from Text [J]. Decision Support Systems, 2014,62:78-93.
  • 10De Knijff J, Frasincar F, Hogenboom F. Domain Taxonomy Learning from Text: The Subsumption Method Versus Hierarchical Clustering[J]. Data & Knowledge Engineering, 2013, 83: 54-69.

二级参考文献152

共引文献41

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部