期刊文献+

An analytical model for estimating soil temperature profiles on the Qinghai-Tibet Plateau of China 被引量:4

An analytical model for estimating soil temperature profiles on the Qinghai-Tibet Plateau of China
下载PDF
导出
摘要 Soil temperature is a key variable in the control of underground hydro-thermal processes. To estimate soil temperature more accurately, this study proposed a solution method of the heat conduction equation of soil temperature (improved heat conduction model) by applying boundary conditions that incorporate the annual and diurnal variations of soil surface temperature and the temporal variation of daily temperature amplitude, as well as the temperature difference between two soil layers in the Tanggula observation site of the Qinghai-Tibet Plateau of China. We employed both the improved heat conduction model and the classical heat conduction model to fit soil temperature by using the 5 cm soil layer as the upper boundary for soil depth. The results indicated that the daily soil temperature amplitude can be better described by the sinusoidal function in the improved model, which then yielded more accurate soil temperature simulating effect at the depth of 5 cm. The simulated soil temperature values generated by the improved model and classical heat conduction model were then compared to the observed soil temperature values at different soil depths. Statistical analyses of the root mean square error (RMSE), the normalized standard error (NSEE) and the bias demonstrated that the improved model showed higher accuracy, and the average values of RMSE, bias and NSEE at the soil depth of 10-105 cm were 1.41℃, 1.15℃ and 22.40%, respectively. These results indicated that the improved heat conduction model can better estimate soil temperature profiles compared to the traditional model. Soil temperature is a key variable in the control of underground hydro-thermal processes. To estimate soil temperature more accurately, this study proposed a solution method of the heat conduction equation of soil temperature (improved heat conduction model) by applying boundary conditions that incorporate the annual and diurnal variations of soil surface temperature and the temporal variation of daily temperature amplitude, as well as the temperature difference between two soil layers in the Tanggula observation site of the Qinghai-Tibet Plateau of China. We employed both the improved heat conduction model and the classical heat conduction model to fit soil temperature by using the 5 cm soil layer as the upper boundary for soil depth. The results indicated that the daily soil temperature amplitude can be better described by the sinusoidal function in the improved model, which then yielded more accurate soil temperature simulating effect at the depth of 5 cm. The simulated soil temperature values generated by the improved model and classical heat conduction model were then compared to the observed soil temperature values at different soil depths. Statistical analyses of the root mean square error (RMSE), the normalized standard error (NSEE) and the bias demonstrated that the improved model showed higher accuracy, and the average values of RMSE, bias and NSEE at the soil depth of 10-105 cm were 1.41℃, 1.15℃ and 22.40%, respectively. These results indicated that the improved heat conduction model can better estimate soil temperature profiles compared to the traditional model.
出处 《Journal of Arid Land》 SCIE CSCD 2016年第2期232-240,共9页 干旱区科学(英文版)
基金 financially supported by the National Basic Research Program of China(2013CBA01803) the key project of the Chinese Academy of Sciences(KJZD-EW-G03-02) the National Natural Science Foundation of China(41271081 41271086) the One Hundred Talent Program of the Chinese Academy of Sciences(51Y551831) the Natural Science Foundation of Gansu Province(1308RJZA309) the support of the West Light Foundation of the Chinese Academy of Sciences
关键词 soil temperature heat conduction equation daily amplitude boundary condition soil temperature heat conduction equation daily amplitude boundary condition
  • 相关文献

参考文献3

二级参考文献32

共引文献82

同被引文献48

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部