摘要
为保证目标轮廓的连续性,以弦理论为基础,在满足Dirichlet边界条件下,建立目标轮廓能量泛函模型.通过把目标轮廓曲线看作离散粒子相互作用组成的系统,构造粒子运动的响应函数,模拟粒子间的相互作用,采用增量法,逐步搜寻满足条件的轮廓曲线,在满足能量泛函最小时,提取出目标轮廓.实验结果表明:通过设置相关参数,能够有效提取出目标轮廓曲线,保证轮廓曲线的完整性,使得曲线支持无级缩放.该算法只须给定两个端点就可提取一条开目标轮廓曲线,减少了目标轮廓提取人工交互次数,提高了工作效率.
In order to guarantee the continuity of the object contour,the energy functional model of object contour based on the string theory satisfying the Dirichlet boundary conditions is established in this paper. By taking the object contour curve as a composition system of discrete interaction particles,the response function of particle motion is constructed such that the interaction between particles is simulated. Finally,the incremental method is adopted to gradually search contour curve which satisfies minimization condition of energy function. Experimental results show that the object contour can be extracted effectively by reasonable configuration of relevant parameters,in the meanwhile,the integrity of the contour curve can be ensured and the extracted curve can be zoomed without limitation. An open contour curve with two end points can be extracted efficiently using this algorithm which need lesser manual interaction.
出处
《中南民族大学学报(自然科学版)》
CAS
北大核心
2015年第4期123-128,共6页
Journal of South-Central University for Nationalities:Natural Science Edition
基金
国家自然科学基金资助项目(60975011)
中南民族大学中央高校基本科研业务费专项资金资助项目(YZZ13003
CZW15051)
关键词
弦理论
目标轮廓提取
能量泛函模型
响应函数
string theory
object contour extraction
energy functional model
response function