期刊文献+

IF环和■-Mittag-Leffler模 被引量:1

IF Rings and ■-Mittag-Leffler Modules
下载PDF
导出
摘要 ■-Mittag-Leffler模是同调代数中重要的一类研究对象,利用该类模的性质,得到了右IF环是左凝聚环的一个充分条件,所得结果可以用来刻画IF环。结果表明,研究相对Mittag-Leffle模的性质有助于加深对一些重要环类的理解。 F-Mittag-Leffler modules are very important in homological algebra.Using the properties of F-Mittag-Leffler modules,a sufficient condition is obtained for right IF rings to be left coherent.Based on the result,a characterization of IF rings is given.All results show that some important classes of rings can be studied by relative Mittag-Leffler modules.
作者 汪建
出处 《金陵科技学院学报》 2015年第4期49-52,共4页 Journal of Jinling Institute of Technology
基金 金陵科技学院国基孵化科研基金(jit-gjfh-201502)
关键词 F-Mittag-Leffler模 左凝聚环 IF环 F-Mittag-Leffler modules left coherent rings IF rings
  • 相关文献

参考文献9

  • 1Colby R R.Rings Which have Flat Injeetive Modules[J].J Algebra, 1975,35(1-3) :239-252.
  • 2Gao Zeng-hui.On Strongly Gorenstein FP-injeeitve Modules[J].Comm Algebra, 2013,41 : 3035- 3044.
  • 3Mahdou N,Tamekkante M, Yassemi S. On (Strongly) Gorenstein Von Neumann Regular Rings[J].Comm Algebra, 2011,39 :3242-3252.
  • 4Angeleri-Htigel L,Bazzoni S, Herbera D.A Solution to the Baer Splitting Problem[J].Trans Amcr Math Soc,2007,360 (5) :2409-2421.
  • 5Angeleri- Htigel L, Herbera D. Mittag-Leffler Conditions on Modules[J]. Indiana Math J, 2008,57 ( 5 ) : 2459 - 2517.
  • 6Herbera D,Trlifaj J.The Countable Telescope Conjecture for Module Categories[J].Adv Math,2012,229:3436-3467.
  • 7Mao Li-xin.On Strongly Flat and Ω-Mittag-Leffler Objects in the Category ((R-rood)^op , Ab) [J].Mediterr J Math, 2013, 10:655-676.
  • 8Enochs E E,Jenda M G.Relative Homologieal Algebra[M].Berlin:Walter de Gruyter, 2000:81- 82.
  • 9汪建.关于R-Mittag-Leffler模的注记[J].金陵科技学院学报,2013,29(2):4-7. 被引量:2

二级参考文献6

  • 1Lidia Angeleri Hiigel,Silvana Bazzoni,Dolors Herbera. A Solution to the Baer Splitting Problem[J]. Transactions of the American Mathematical Society, 2007,360 (5) : 2409- 2421.
  • 2Lidia Angeleri Hiigel,Dolors Herbera. Mittag-Leffler Conditions on Modules[J]. Indiana University Mathematics Jour- nal, 2008,57 (5) : 2459- 2517.
  • 3Jan Saroch,Jan Sovicek. The Countable Telescope Conjecture for Module Categories [J]. Advances in Mathematics, 2008,219 (3) : 1002- 1036.
  • 4Frank W Anderson,Kent R Fuller. Rings and Categories of Modules[M]. 2nd Edition. New York: Springer-Verlag, 2004:218-231.
  • 5Edgar E Enochs ,Overtoun M G Jenda. Relative Homological Algebra[M]. Berlin-New York :Walter de Gruyter, 2000: 81-82.
  • 6Robert R Colby. Rings Which Have Flat Injective Modules[J]. Journal of Algebra, 1975,35(1-3):239-252.

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部