期刊文献+

基于活动邻域模型的脑组织提取及参数自动设定 被引量:2

Active Neighborhood Model Based Brain Extraction Method and Automatic Parameter Setting
下载PDF
导出
摘要 从T1加权MRI图像中提取脑组织是脑容量测定、脑组织分割、脑萎缩诊断等的重要预处理过程。本文将随机森林法引入基于活动邻域模型的脑组织提取方法中以实现参数的自动设置。该方法先对训练样本进行脑组织提取和特征提取,根据相应参数采用随机森林法对样本进行分类,对于测试样本进行类别判别,根据该类别实现自动设定参数。通过验证证实,本研究所设计的脑组织提取方法具有较好的鲁棒性,设计的参数自动设定方法是可行的,能减少用户交互。 The extraction of brain tissue from cerebral T1-Weighted MRI volume is an important pre-procedure for determination of brain volume,segmentation of brain tissues,and quantification of brain atrophy. The random forest method was used in the active neighborhood model based brain extraction method to set the parameters automatically. This method firstly performed brain extraction on training samples and obtained the corresponding parameters. After feature extraction of training samples,this paper used random forest classifier to classify the training samples and then performed discriminant for testing samples to obtain the parameters of testing samples. Experiments show our brain extraction method has good robustness,and the proposed parameter setting method is feasible and can reduce the interaction of the users.
出处 《南昌航空大学学报(自然科学版)》 CAS 2015年第4期25-29,39,共6页 Journal of Nanchang Hangkong University(Natural Sciences)
基金 国家自然科学基金(61162023 61163046)
关键词 脑组织提取 随机森林 参数设定 brain extraction random forest parameter setting
  • 相关文献

参考文献16

  • 1Shattuck D W, Sandor-leahy S R, Schaper K A, et al. Magnetic resonance image tissue classification using a partial volume model[ J]. NeuroImage,2001,13:856 - 876.
  • 2Caselles V, Morrel J, Sapiro G. Geodesic active contours [ J ]. International Journal of Computer Vision, 1997,22:61 - 79.
  • 3Smith S M. Fast robust automated brain extraction[J]. Human Brain Mapping,2002,17:143 -155.
  • 4Zhang H Y, Liu J F, Zhu Z X, et al. An automated and simple method for brain MR image extraction [ J ]. BioMedical Engineering OnLine,2011,10( 1 ) :81.
  • 5Zhuang A H, Valentino D J, Toga A. Skull-stripping magnetic resonance brain images using a model-based level set [ J ]. NeuroImage ,2006,32:79 - 92.
  • 6Hahn H K, Peitgen H O. The skull stripping problem in MRI solved by a single 3D watershed transform[J]. Lecture Notes in Computer Science ,2000,1935 : 134 - 143.
  • 7Cox R W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages [ J ]. Computers and Biomedical Research, 1996,29 : 162 - 73.
  • 8Rex D E, Shattuck D W, Woods R P, et al. A meta-algorithm for brain extraction in MRI[J]. Neumlmage,2004,23:625 -637.
  • 9Huang A, Abugharbieh R, Ram R, et al. MRI brain extraction with combined expectation maximization and geodesic active contours [ C ]. In Proceedings of the 6th IEEE International Symposium on Signal Processing and Information Technology,2006,8 : 27 - 30.
  • 10Segonne F, Dale A M, Busa E, et al. A hybrid approach to the skull stripping problem in MRI [J]. Neurolmage,2004,22: 1060 - 1075.

二级参考文献8

  • 1张铁中,周天娟.草莓采摘机器人的研究:Ⅰ.基于BP神经网络的草莓图像分割[J].中国农业大学学报,2004,9(4):65-68. 被引量:41
  • 2Marnymaa M,giorsi F,Poggio T.A connection bewteen GRBF and MLP[D].Cambirdge:Msasachuests Institute of Tcehnology,1992.
  • 3Robinosn A J,Niranjan M,Flalside F.Generalising the nodes of the error propagation newtorks[D].Cambridge U K:Cambirdge University,1988.
  • 4Dorffner G.Euclid net-a multiplayer feedforward network using the Euclidean distance as porpagation rule[C]//Alekssander I,Taylor J.Proceedings of the Artificial Neu-ral Networks,Amsterdam,North-Holland,1992:1633-1636.
  • 5Duch W,Jankowski N.Transfer functions:hidden possibilities for better neural networks[C]//Proceedings of European Symposium on Artificial Neural Networks,Bruges,Belgium,2001:81-94.
  • 6Michie D,Spiegelhalter D J,Taylor C C.Machine learning,neural and statistical classification[M].London:Ellis Horwood,1994.
  • 7王守觉,李兆洲,陈向东,王柏南.通用神经网络硬件中神经元基本数学模型的讨论[J].电子学报,2001,29(5):577-580. 被引量:45
  • 8朱程辉,陈昕,王金玲.基于RBF神经网络在图像分割参数估计的应用[J].计算机工程与应用,2003,39(30):85-87. 被引量:1

共引文献3

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部