期刊文献+

基于大数据的科技评价方法研究 被引量:3

Research on S&T Evaluation Method Based on Big Data
下载PDF
导出
摘要 科技评价对象所涉及的数值、图像、声音具有全媒体、多维度、跨时间的特性,挖掘和运用这些海量数据,转化为直观的、随时间和空间变化的、以图形图像呈现在同行评议专家面前,可以有效提高评价的效率和效果。通过建立众包模式、数据整合和提取规则知识、将科技评价结果应用于实践、建立评价过程交互式可视化的流程以构建基于大数据的科技评价模式,这种模式存在着观念陈旧过时、数据挖掘能力、大数据处理速度、科技评价数据安全等方面的挑战。 S&T evaluation involved numerical, image, sound have the characteristics of all media, multi-dimension and time-cross. Mining and using these huge amount of data and transforming to intuitive ones which change with time and spaceand are presented in front of the peer review expertsin graphical images, can effec- tively improve the efficiency and effectiveness of the evaluation. Through the establishment of crowd-sourcing model, data integration and knowledge on extraction rules, we applyscience and technology evaluation results intopraetice, and construct evaluation process with interactive visualization in order to promote the construction of science and technology evaluation pattern based on big data. This pattern has challenges such as obsoleteidea, data mining capacity, speed of big data processing, security of S&T evaluation data and other aspects.
作者 高霞
出处 《创新科技》 2015年第11期27-30,共4页 Innovation science and technology
基金 国家社科基金(14BJL004) 河南省社科规划课题(2013CZZ011) 河南省政府招标课题(2015B049) 河南省教育厅人文社科研究项目(2015-QN-023)
关键词 大数据 科技评价 数据密集型方法 Big Data S&T evaluation Data Intensive Method
  • 相关文献

参考文献6

二级参考文献268

  • 1朱宝璋.关于灰色系统基本方法的研究和评论[J].系统工程理论与实践,1994,14(4):52-60. 被引量:80
  • 2[美]阿尔温·托夫勒.《第三次浪潮》[M].三联书店,1984..
  • 3Levine P, Pomerol J C. PRIAM, an interactive program for choosing among multiple attribute alternatives[J]. European Journal of Operations Research, 1986, 25(2): 272-280.
  • 4Grabowski M R,Wallace W A. An expert system for maritime pilots: Its design and assessment using gaming[J]. Management Science, 1993, 3(12): 1506-1520.
  • 5Booker L,Goldberg D E, Holland J H.Classifier system and genetic algorithms[J]. Artificial Intellifence, 1989, 40(9): 1-3.
  • 6Dagli C,Schierholt K. Stock market prediction using different neural network classification architectures[A]. In: IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering[C]. 1996. 72-78.
  • 7Zeigler. Theory of Modeling and Simulation[M]. London: John Wiley & Sons Press, 1976. 45-152.
  • 8Kittock J E. Emergent conventions and the structure of multi-agent systems[A]. In: The Economy as an Evolving Complex System[M]. New Mexico: Addison Wesley Press, 1993. 371-383.
  • 9Hamiton, Nash, Pooch. Distributed Simulation[M]. Washington: CRC Press, 1997. 376-457.
  • 10Puccia C J, Levins R. Qualitative Modeling of Complex Systems[M]. Boston: Harvard University Press, 1985. 217-298.

共引文献1830

同被引文献43

引证文献3

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部