摘要
本文研究了一类时空离散的非线性抛物型偏差分系统的迭代学习控制问题.首先,针对系统含有不确定系数与非线性特点,设计了开环P型迭代学习控制算法;然后,建立了输出跟踪误差沿迭代轴收敛的充分条件,并利用离散Gronwall不等式、λ范数以及压缩映射原理,详细给出了收敛性分析证明.最后通过仿真实例说明了算法的有效性.
The iterative learning control (ILC) technique is applied to a class of spatial-temporal discrete nonlinear parabolic partial difference systems. For the discussion purpose, an open-loop P-type iterative learning algorithm is de- signed for the systems containing uncertain coefficients and nonlinear terms. Then, the sufficient condition of the tracking error to converge is established, and the convergence analysis is discussed using discrete Gronwall inequality, A-norm and the contraction mapping principle. Furthermore, a simulation example is given to illustrate the effectiveness of the proposed algorithm.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2015年第12期1607-1612,共6页
Control Theory & Applications
基金
国家自然科学基金项目(61364006
61374104)
广西优秀中青年骨干教师培养工程
广西高等学校科研一般项目(2013YB175)资助~~
关键词
迭代学习控制
收敛性分析
偏差分系统
非线性
iterative learning control
convergence analysis
partial difference systems
nonlinear