期刊文献+

一种新的无约束优化问题的混合算法

An innovation hybrid algorithm on unconstrained optimization problems
下载PDF
导出
摘要 将传统的一维搜索方法——成功-失败法与新的Apollonius填充算法相结合,给出一种新的平面上的无约束优化方法。该方法既将成功-失败法推广到了平面上,又将Apollonius填充算法的适用对象由约束问题推广到了无约束问题。数值实验表明,该方法适用于较为复杂的非线性可微凸函数,如果对计算时间要求不高的话,该方法可以适用于具有较高复杂度的非线性可微凸函数,具有一定的实际应用价值。 Combing one dimensional research method—Success-Failure method with novel Apollonius fill algorithm,gives a new kind of algorithm of unconstrained optimization method on the plane.The new algorithm has extended Success-Failure method to the plane.At the same time,the scope of application of Apollonius fill algorithm is extended from constrained optimization problems to unconstrained problems.Numerical experiment results show that this algorithm is suitable for complicated nonlinear differentiable convex function.If the calculation time is not highly required,the algorithm can be applied to any complicated nonlinear differentiable convex function.Whereby indicating that this algorithm is of the highly practical application value.
出处 《西安理工大学学报》 CAS 北大核心 2015年第4期460-463,474,共5页 Journal of Xi'an University of Technology
基金 国家自然科学基金资助项目(61273127 61304204) 高等学校博士学科点专项科研基金资助项目(20116118110008)
关键词 Apollonius填充 成功-失败法 非线性最优化 算法 Apollonius fill Success-Failure method nonlinear optimization algorithm
  • 相关文献

参考文献8

二级参考文献24

  • 1DuanLi,FucaiQian,PeilinFu.Research on Dual Control[J].自动化学报,2005,31(1):32-42. 被引量:14
  • 2杨俊安,庄镇泉.量子遗传算法研究现状[J].计算机科学,2003,30(11):13-15. 被引量:54
  • 3张文修 梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社,2003..
  • 4FALCONER KJ.Fractal Geometry - Mathematical Foundations and Applications [M].New York: Wiley publishing company, 1990.
  • 5FIELD M, GOLUBITSKY M. Symmetry in Chaos: A Search for Pattern in Mathematics, Art, and Nature[M]. Oxford: Oxford University Press, 1992.
  • 6PEITGEN HO, RICHTER PH.The Beauty of Fractals: Images of Complex Dynamical Systems[M]. New York: Springer-Verlag, 1986.
  • 7BARNSLEY MF, DEVANEY RL, MANDELBROT BB,et al. The Science of Fractal Images[M]. New York: Springer-Verlag, 1988.
  • 8BARNSLEY MF.Fractals Everywhere[M]. San Diego, CA: Academic Press, 1988.
  • 9PICKOVER CA.Computers, Pattern, Chaos and Beauty: Graphics from an Unseen World[M]. New York: St. Martin Press, 1990.
  • 10FRAME M, COGEVINA T. An infinite circle inversion limit set fractal[J]. Computer & Graphics, 2000,(24):797-804.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部