期刊文献+

具有弱Allee效应的捕食者—食饵模型动态

The Dynamics of a Predator-Prey Model with Weak Allee Effect
原文传递
导出
摘要 分析了一类食饵具有弱Allee效应的捕食者—食饵模型.给出了系统所有平衡点的分类和稳定性.利用Hopf分支的规范型理论,分析和数值模拟结果显示,Allee效应的加入可以导致系统产生一个稳定的极限环.结果表明,Allee效应可以破坏共存平衡点的稳定性,从而使以前简单的系统产生更丰富、复杂的动态行为,如超临界Hopf分支,这意味着Allee效应可能是捕食者—食饵群落周期波动的最简单的原因. This paper deals with a predator-prey model with a weak Allee effect on the prey population.The classification and stability of all equilibriums of the system are given.Using the normal form theory of Hopf bifurcation,it is shown that the Allee effect can result in the existence of a stable limit cycle.Our results suggest that the weak Allee effect can destabilize the coexistence equilibrium and bring the rich and complicated dynamics to the previous simple model,such as supercritical Hopf bifurcations,implying that the weak Allee effect can be one of the simplest reasons for periodic behavior in the predator-prey communities.
出处 《河南大学学报(自然科学版)》 CAS 2016年第1期120-126,共7页 Journal of Henan University:Natural Science
基金 国家自然科学基金项目(31200312)
关键词 ALLEE效应 捕食者—食饵模型 稳定性 HOPF分支 Allee effect predator-prey system stability Hopf bifurcation
分类号 O029 [理学]
  • 相关文献

参考文献22

  • 1KOT M. Elements of mathematical ecology [M]. Cambridge: Cambridge University Press, 2001.
  • 2ABBOTT K C. A dispersal-induced paradox: synchrony and stability in stochastic metapopulations [J]. Ecology Letters, 2011, 14(11): 1158-1169.
  • 3ALLEE W C. Animal aggregations: a study in general sociology [M]. Chicago: University of Chicago Press, 1931.
  • 4BEGON M, MORTIMER M. Population ecology., a unified study of animals and plants [M]. Oxford: Blackwell Scientific, 1981.
  • 5MCCARTHY M A. The Allee effect, finding mates and theoretical models [J]. Ecological Modelling, 1997, 103(1) : 99- 102.
  • 6JANG S R J, DIAMOND S L. A host-parasitoid interaction with Allee effects on the host [J]. Computers Mathematics with Applications, 2007, 53(1).. 89-103.
  • 7KENT A, DONCASTER C P, SLUCKIN T. Consequences for predators of rescue and Allee effects on prey [J]. Ecologi- cal Modelling, 2003, 162(3): 233-245.
  • 8ZHOU S R, LIU Y F, WANG G. The stability of predator-prey systems subject to the Allee effects [J]. Theoretical Pop- ulation Biology, 2005, 67(1): 23-31.
  • 9WANG W X, ZHANG Y B, LIU C Z. Analysis of a discrete time predator prey system with Allee effect [J]. Ecological Complexity, 2011, 8(1).. 81-85.
  • 10LIU H, LI Z, GAO M, et al. Dynamics of a host-parasitoid model with Allee effect for the host and parasitoid aggrega- tion [J]. Ecological Complexity, 2009, 6(3).. 337-345.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部