期刊文献+

断层对压裂液运移影响的数值模拟研究 被引量:4

Numerical simulation of the fault impact on fracturing fluid migration
下载PDF
导出
摘要 水力压裂必然会带来相关环境问题,压裂液对浅层含水层的影响不容忽视。为了查明压裂液潜在的向上运移通道及不同地质条件下压裂液的运移情况,对压裂液潜在的运移通道进行了分类,基于变密度数值模拟软件SEAWAT,考虑不同渗漏点与断层底部距离、不同断层倾角对压裂液运移的影响,设计了6种情景开展了数值模拟。结果表明:压裂液潜在向上运移通道主要有对流传输、裂隙传输以及井管泄露。密度差异产生的浮力是压裂液上升的主要动力。压裂液渗漏点距离断层底部越近,影响范围越大,监测点水位和浓度均最先降低。在存在微弱水力梯度条件下,断层倾角α为20°时,断层对局部水流水位及浓度影响较大;α为90°时,对压裂液运移产生影响较小;α为70°时,断层对压裂液运移影响最大,压裂液会扩散至较大范围。 Hydraulic fracturing,as a new shale gas production method, inevitably raised environmental problems. Fracturing fluid may influence the shallow aquifer,which cannot be ignored. The objective of this study is to identify the potential pathways of fracturing fluid upward migration and show the different migration plume in various geological scenarios. We classified the potential upward migration pathways of fracturing fluid. Based on SEAWAT( a variable density simulation software),we considered the distance between the nearest leakage point and the fault,the inclination of the fault,and designed six simulation scenarios. The results show that the fracturing fluid potential migration pathways are convective transport,fracture transport and well pipe leakage. Buoyant caused by density differences is the main driving force of migration. The migration plume is greater if the distance between the leakage point and the fault is closer. The monitoring well also shows an earlier drop in water level and concentration. When there exists week hydraulic gradient,scenario( dip angle is 20°) shows a greater impact on the local water level and concentration. If the dip angle is 90°,the fracturing fluid transport is less affected,and if the dip angle is 70°,the fault raises the greatest impact on the migration of fracturing fluid,and the fracturing fluid can spread to a wider range.
出处 《水文地质工程地质》 CAS CSCD 北大核心 2016年第1期117-123,共7页 Hydrogeology & Engineering Geology
基金 中国科学院战略性先导科技专项(B类)课题(XDB10030600) 国家自然科学基金项目(41202182)
关键词 水力压裂 压裂液 运移通道 数值模拟 SEAWAT 断层 hydraulic fracturing fracturing fluid migration pathways numerical model SEAWAT fault
  • 相关文献

参考文献17

  • 1I,ee D S, J D Herman, D Elsworth, et al. A critical evaluation of unconventional gas recovery from the marcellus shale, northeastern United States [ J ]. KSCE Journal of Civil Engineering, 2011, 15 (4): 679 - 687.
  • 2Vidic R D, S L Brantley, J M Vandenbossche,et al. hnpact of shale gas develnpment on regional water quality[J]. Science, 2013, 340(6134):1 -9.
  • 3Haluszczak L O, A W Rose, I. R Kump. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA [ J ]. Applied Geochemistry, 2013, 28:55-61.
  • 4Kramer D. Shale-gas extraction faces growing public and regulatory challenges [J].Physics Today, 2011 , 64(7) :23.
  • 5Jackson R B, S G Osborn, A Veng,,sh, et al. Repl.s to Davies: Hydraulic fracturing remains a possible mechanism for observed melbane c~onlatvlit~alh)n of drinking water [ J ]. Proceedings oJ" lhe National Ac:ademy of Sciences, 2011, 108(43):872.
  • 6Davies R J, S A Mathias, J Moss, e/ al. Hydraulic' fractures: How far can they go? [J]. Marine and Petroleum Geology, 2012, 37( 1 ) :1 -6.
  • 7Myers 3". Potential Contaminan! Pathways from Hydraulically Fractured Shale to Aquifers [J].Groundwater, 2012, 50(6) :872 - 882.
  • 8Saiers J E,E Barth. Comment on Potential contaminantpathways from hydraulically fractured shale aquifers [Jl. Ground Water, 2012, 50(6) :826 -828.
  • 9Cohen H A, T Parratt, C B Andrews. Comment on Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers [ J]. Groundwater, 2013, 51(3) :317 -319.
  • 10Gassiat C, T Gleeson, R Lefebvre, et al. Hydraulic fracturing in faulted sedimentary basins: Numerical simulation of potential contamination of shallow aquifers over long time scales [ J ]. Water Resources Research, 2013, 49(12) :8310 -8327.

二级参考文献43

  • 1章根德,王羽,石占中.地质材料中的流-固耦合研究[J].岩石力学与工程学报,2000,19(z1):856-859. 被引量:12
  • 2张洪涛,文冬光,李义连,张家强,卢进才.中国CO_2地质埋存条件分析及有关建议[J].地质通报,2005,24(12):1107-1110. 被引量:84
  • 3井兰如,冯夏庭.放射性废物地质处置中主要岩石力学问题[J].岩石力学与工程学报,2006,25(4):833-841. 被引量:32
  • 4惠健,刘建仪,叶长青,孙良田,李士伦.高含CO_2水合物生成条件模拟与预测研究[J].西南石油大学学报(自然科学版),2007,29(2):14-16. 被引量:9
  • 5U.S.Massachusetts Institute of Technology.TheFuture of Geothermal Energy[R/OL].(2007)[2011-03-10].http://geothermal.inel.gov.杨伍林,译.
  • 6U.S.Department of Energy.An evaluation ofEnhances Geothermal Systems technology[R/OL].(2008)[2011-03-10].http://www.eere.energy.gov.
  • 7How an Enhanced Geothermal System Works[OL].[2011-03-11].http://www.eere.energy.gov/geothermal/egs_animation/html.
  • 8Incropera F P,DeWitt D P,Bergman T L,et al.Fundamentals of Heat and Mass Transfer[M].Beijing:Chemical Industry Press,2007.葛新石,叶宏,译.
  • 9Taron J,Elsworth D.Thermal-hydrologic–mechanical l-chemical processes in the evolution ofengineered geothermal reservoirs[J].InternationalJournal of Rock Mechanics&Mining Sciences,2009,46:855-864.
  • 10Min K B,Rutqvist Elsworth.Chemically andmechanically mediated influences on the transport andmechanical characteristics of rock fractures[J].International Journal of Rock Mechanics&MiningSciences,2009(46):80-89.

共引文献55

同被引文献37

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部