期刊文献+

基于机器视觉的天轮偏摆检测技术 被引量:8

Head Sheave Deflection Detection Technology Based on Machine Vision
原文传递
导出
摘要 设计了一种基于机器视觉的天轮偏摆检测系统。利用机器视觉系统的CCD摄像机实时采集天轮偏摆运行状态视频;对每一帧图像进行图像滤波和图像增强,采用Mean Shift算法实现天轮偏摆的跟踪;经坐标变换将跟踪目标的像素偏移换算为实际物理尺寸,从而计算出天轮偏摆。试验结果表明,设计的天轮偏摆检测系统现场安装检测方便且能满足精度要求。 A head sheave deflection detection system based on machine vision was designed. First, CCD camera of the machine vision system is used to have the real - time acquisition of the running state video of the head sheave deflection ; then, each frame of image is carried on the filtering and enhancement of the image, and Mean Shift algorithm is used to realize the tracking of the head sheave de- flection; finally, the pixel offset of the track target is converted for the actual physical dimensions to calculate the head sheave deflec- tion through the coordinate transformation. The experimental results show that the field detection and installation of the designed deflec- tion sheave detection system is convenient and can meet the requirements of precision with good practical value. It solves the problem that most mine friction head sheave deflection has difficult detection and high cost.
出处 《煤矿安全》 CAS 北大核心 2016年第1期119-122,共4页 Safety in Coal Mines
基金 江苏省高校优势学科建设工程资助项目
关键词 天轮偏摆检测 机器视觉 Mean SHIFT算法 目标跟踪 矿井提升 head sheave deflection detection machine vision Mean Shift algorithm target tracking mine hoisting
  • 相关文献

参考文献6

二级参考文献58

共引文献146

同被引文献19

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部