期刊文献+

基于DOE和MIGA的消声器优化设计 被引量:3

Optimization Design of Muffler Based on Design of Experiment and Multi-Island Genetic Algorithm
下载PDF
导出
摘要 高效率的设计出大消声量的消声器一直是车辆排气噪声控制中面临的难题。考虑到消声器优化过程中涉及参数较多,在消声器传递损失数值建模的基础上,采用试验设计(DOE)中的拉丁超立方设计对消声器参数进行分析,结合多岛遗传算法(MIGA)和传统遗传算法(GA)分别建立消声器在排气噪声单峰值频率和多峰值频率处的传递损失为目标的优化模型,开展消声器传递损失优化设计研究。结果表明:DOE方法能有效的辨识出各参数对消声器传递损失影响的大小,简化了消声器的优化模型。MIGA对消声器在单峰值频率和多峰值频率的优化都优于GA,且多峰值频率的优化好于单峰值频率的优化,能使排气噪声最大降低20.98 d B。 To design muffler efficiently with high capability of noise reduction is always a tough problem in control of vehicle exhaust noise. Considering that there are many parameters in the muffler design optimization, the design parameters of mufflers were analyzed by Latin Hypercube of design of experiment (DOE) based on the numerical modeling of transmission loss. Combining the multi-island genetic algorithm (MIGA) with genetic algorithm (GA), the optimization model of mufflers was established in which the transmission losses at the single peak frequency of exhaust noise and multiple peak frequencies are set as as the optimization objective, respectively. The result shows that the DOE method can effectively identify the parameters which affect muffler performance and simplify the optimization model of muffler. The optimization results of MIGA in both the single peak frequency and multiple peak frequency is better than that of GA, and the results of multiple peak frequency, optimization which is better than that of single peak frequency optimization, can reduce the exhaust noise by 20.98 dB. This study provides a new optimization design method of muffler.
出处 《机械科学与技术》 CSCD 北大核心 2016年第2期296-302,共7页 Mechanical Science and Technology for Aerospace Engineering
基金 国家高技术研究发展计划(863计划)项目(2014AA041501)资助
关键词 试验设计 多岛遗传算法 消声器 传递损失 优化设计 computer software, control, design of experiments, design, efficiency, flow rate, genetic algorithms, Mach number, measurements, mesh generation, muhiobjective optimization, noise abatement, optimization, transfer matrix method design of experiment, muffler, multi-island genetic algorithm, optimization design, transmission loss
  • 相关文献

参考文献12

  • 1何渝生.汽车噪声控制[M].北京:机械工业出版社,1999..
  • 2倪计民,解难,杜倩颖,石秀勇,孔正国.基于DoE的车用消声器优化设计[J].汽车技术,2012(3):22-26. 被引量:9
  • 3Chiu M C. Shape optimization of one-chamber perforated mufflers filled with wool using simulated annealing [ J ]. Journal of Marine Science and Technology, 2013, 21 (4) :380-390.
  • 4胡玉梅,许响林,褚志刚,李景渊.基于声传递矩阵法的汽车排气消声器设计[J].重庆大学学报(自然科学版),2005,28(1):15-18. 被引量:23
  • 5孙伟,张呈林.基于多目标遗传算法的直升机总体参数优化设计[J].机械科学与技术,2010,29(2):265-269. 被引量:10
  • 6Munjal M L. Plane wave analysis of side inlet/outlet chamber mufflers with mean flow [ J ]. Applied Acoustics, 1997,52(2) : 165-175.
  • 7Chiu M C, Chang Y C. Numerical studies on venting system with multi-chamber perforated mufflers by GA optimization [ J ]. Applied Acoustics, 2008, 69 ( 11 ) : 1017-1037.
  • 8Chiu M C. Shape optimization of multi-chamber mufflers with plug-inlet tube on a venting process by genetic algorithms [J]. Applied Acoustics, 2010, 71 ( 6 ) : 495-505.
  • 9Selamet A, Ji Z L, Radavich 19 M. Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet: II. comparison with experimental and computational studies [ J ]. Journal of Sound and Vibration, 1998,213(4) :619-641.
  • 10Millo F, Badami M, Longhini F, et al. Optimization of a variable geometry exhaust system through design of experiment[ R]. SAE Technical Paper 2008-01-0675, 2008.

二级参考文献19

  • 1蔡超,宫镇,赵剑,曾发林.拖拉机抗性消声器声学子结构声传递矩阵研究[J].农业机械学报,1994,25(2):65-72. 被引量:16
  • 2刘淳安,王宇平.基于新模型的多目标遗传算法[J].西安电子科技大学学报,2005,32(2):260-263. 被引量:14
  • 3Konak A, Colt D, Smith A. Multi-objective optimization using genetic algorithms: a tutorial [ J ]. Reliability Engineering and System Safety, 2006.91 (9) :992 - 1007.
  • 4Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms : empirical results [ J ]. Evolutionary Computation, 2000,8(2) :173 - 195.
  • 5Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm[ R]. Technical Report 103, Computer Engineering and Networks Laboratory( TIK), Swiss Federal Institute of Technology ( ETH ) Zurich, Gloriastrasse 35, CH-8092 Zunch, Switzerland, May 2001.
  • 6Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjectivre genetic algorithm : NSGA - II [ J ]. IEEE Transactions on Evolutionary Computation, 2002,6 (2) : 182 - 97.
  • 7Lu H, Yen G G. Rank-density-based multiobjective genetic algorithm and benchmark test function study [ J]. IEEE Transactions on Evolutionary Computation, 2003,7 ( 4 ) : 325 - 43.
  • 8Yen G G, Lu H. Dynamic multiobjective evolutionary algorithm: adaptive cell- based rank and density estimation [ J ]. IEEE Transactions on Evolutionary Computation, 2003,7 ( 3 ) : 253 - 74.
  • 9杜倩颖.DOE理论及在发动机优化设计中的应用研究:[学位论文].上海:同济大学,2010.
  • 10Hill W. Exhaust System Acoustics and Backpressure. Tenneco Inc.

共引文献71

同被引文献36

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部