期刊文献+

一种求解分类问题的自适应人工蜂群算法 被引量:2

Adaptive artificial bee colony algorithm for classification problem
下载PDF
导出
摘要 考虑到分类算法学习到的分类器的可理解性,提出一种求解分类问题的自适应人工蜂群算法——A_ABC,该算法生成一组可理解的分类规则。在基于规则的分类方法中,采用合适的规则评价函数能够提高分类算法的性能,A_ABC算法能够针对不同数据集自适应选取相适应的规则评价函数,同时能够有效处理连续类型的属性和离散类型的属性。最后,在多个公用的真实数据集上,将A_ABC算法与相关算法进行了比较,结果表明A_ABC算法能够更加有效地解决分类问题。 Appropriate rule evaluation functions are important to improve the performance of classification algorithm based on rules.In order to obtain the comprehensible classification rules,an adaptive artificial bee colony algorithm,called A_ABC algorithm,is proposed.The A_ABC algorithm can adaptively select a appropriate rule evaluation function for the given data,and effectively process both discrete attributes and continuous attributes.The proposed A_ABC algorithm is evaluated by experiment using different standard real datasets,and compared with existing classification algorithms.Results show that the A_ABC algorithm can solve classification problems more effectively than the existing algorithms.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第1期252-258,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61300019) 中央高校基本科研业务费项目(N120404013 N120804001 N120204003)
关键词 人工智能 自适应人工蜂群算法 分类问题 规则评价函数 artificial intelligence adaptive artificial bee colony algorithm classification problem rule evaluation function
  • 相关文献

参考文献11

  • 1Muhsin H, Dino I, Rajprasad R. Reducing support vector machine classification error by implementing kalman filter[J]. International Journal of Intelligent Systems and Applications, 2013, 5(9) : 10-18.
  • 2Nowak B A, Nowicki R K, Mleezko W K. A new method of improving classification accuracy of deci- sion tree in case of incomplete samples[C]//The llth International Conference on Artificial Intelli- gence and Soft Computing, Zakopane, Poland, 2013 : 448-458.
  • 3Parpinelli R S, Lopes H S, Freitas A A. An ant colony based system for data mining: applications to medical data[C]//Proceedings of Genetic and Evolu- tionary Computation, San Francisco, Morgan Kauf- mann, 2001: 791-797.
  • 4Martens D, De Backer M, Haesen R, et al. Classi- fication with ant colony optimization [J]. IEEE Transactions on Evolutionary Computation, 2007,11 (5) : 651-665.
  • 5Holden N, Freitas A A. A hybrid PSO/ACO algo- rithm for discovering classification rules in data min-ing[J]. Journal of Artificial Evolution and Applica- tions, 2008..316145.
  • 6Shukran M A M, Chung Y Y, Yeh W C. Artificial bee colony based data mining algorithms for classifi- cation tasks[J].Modern Applied Science, 2011, 5 (4) :217-231.
  • 7Minnaert B, Martens D, De Backer M, et al. To tune or not to tune: rule evaluation for metaheuris- tic-based sequential covering algorithms [EB/OL]. [2012-12-23]. http://www, feb. ugent, be/nl/ Ondz/wp/Papers/wp 12_769. pdf.
  • 8Salama K, Abdelbar A. Exploring different rule quality evaluation functions in aco-based classifica- tion algorithms[C]//IEEE Symposium on Swarm Intelligence, Paris, IEEE Press, 2011 : 1-8.
  • 9Janssen F, F6urnkranz J. On the quest for optimal rule learning heuristics [J]. Machine Learning, 2010, 78(3) :343-379.
  • 10Karaboga D, Basturk B. A powerful and efficient al- gorithm for numerical function optimization: artifi- cial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3) : 459-471.

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部